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Sparse Representations with Chirplets via

Maximum Likelithood Estimation
Jeffrey C. O’Neill, Patrick Flandrin, and William C. Karl

Abstract— We formulate the problem of approximating
a signal with a sum of chirped Gaussians, the so-called
chirplets, under the framework of maximum likelihood es-
timation. For a signal model of one chirplet in noise, we for-
mulate the maximum likelihood estimator (MLE) and com-
pute the Cramér-Rao lower bound. An approximate MLE is
developed, based on time-frequency methods, and is applied
sequentially to obtain a decomposition of multiple chirplets.
The decomposition is refined after each iteration with the
expectation-maximization algorithm. A version of the algo-
rithm, which is O(N) for each chirplet of the decomposition,
is applied to a data set of whale whistles.

I. INTRODUCTION

Chirplets are a class of signals that consists of Gaus-
sians that are translated in time and frequency, scaled, and
chirped. They are defined as
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where ¢, w, and ¢ are in IR and d is in IRT. The parameters
t, w, ¢, and d represent, respectively, the location in time,
the location in frequency, the chirp rate, and the duration,
and s(-) is defined such that
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In this paper we present a method for approximating a
signal as a weighted sum of chirplets

q
z(n) = Y a; el s(n;ti,wi, ci, di).

i=1

using as few parameters as possible, i.e. a sparse approx-
imation. The justification of sparse representations has
been elegantly discussed by several authors [1], [2], [3], [4],
to which we refer the reader for more detail. The result
of this approximation can be applied to de-noising, data
compression, and feature extraction [1], [3], [2], [4], [5]-
Our method is to assume that the signal is actually a
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sum of g chirplets in complex, white, Gaussian noise!

q
X(n) = Z a; €j¢" s(n;ti,wi,ci,di) + W(n) (1)

i=1

where Re{W(n)} and Im{W(n)} are uncorrelated and
~ N(0,0%), and estimate the unknown parameters via
maximum likelihood estimation. The unknown parame-
ters are the chirp parameters a;, ¢;, t;, w;, ¢;, and d; for
i=1,...,q, and the variance of the CWGN ¢2. We for-
mulate the problem for a discrete signal to facilitate the
implementation, and also for a complex signal as it simpli-
fies the theory. We assume that any real signal of interest
can be converted to a complex signal via a Hilbert trans-
form [6] or other filtering. Several authors have proposed
chirplet like decompositions [3], [7], [8], [9], [10], or more
general methods for sparse representations [1], [2]. Our
method is different, in that we formulate the problem using
maximum likelihood estimation. Bayesian techniques for a
similar decomposition have recently been proposed [11].
Chirplets have several appealing properties that moti-
vate their selection for approximating signals.
o If the signal is translated in time or frequency, scaled, or
chirped, then the representation will be covariant to these
changes. This can be important in classification tasks [12].
e The chirplets are versatile in that we can approximate a
variety of time-frequency structures [8].
o Subsets of the chirplets give frames of wavelets and Ga-
bor functions [13].
o Chirplets are the only signals to satisfy the generalized
uncertainty principle [14] with equality

2 2 2
o; 0, — COVy, > 1

where o; is the duration, o, is the bandwidth, and covy,
is the time-frequency covariance.?

o Chirplets are the only signals for which the Wigner dis-
tribution is non-negative [15].

o Calculations involving chirplets can often be expressed
in closed form.

The paper proceeds as follows. In Section II we develop
the maximum likelihood estimator (MLE) for a model of
one chirplet in noise ((1) with ¢ = 1), and in Section IIT we
derive the Cramér-Rao lower bound (CRLB) for the same

1We use upper-case letters to denote random variables, lower-case
letters to denote deterministic quantities or realizations of random
variables, bold face to indicate vectors, and plain text to indicate
scalars. Exceptions to this rule are the constants N, M, and P.

2The necessity of the equality condition is not stated in [14], but it
follows directly from what is presented there.
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model. Since the MLE developed in Section II is computa-
tionally prohibitive, in Section IV we develop an approxi-
mation to the MLE that is more efficient computationally,
and in Section V we perform a simulation to compare the
MLE, the approximate MLE, and the CRLB. In Section VI,
we combine the approximate MLE of Section IV with the
expectation-maximization algorithm to approximate a sig-
nal as a weighted sum of several chirplets. In Section VII
we show examples of the method on synthetic data and
whale whistles. In Section VIII we compare our method
with related work.

II. MAXIMUM LIKELIHOOD ESTIMATION FOR ONE
CHIRPLET

Consider one chirplet in noise
X (n) = a, 7% s(n;ty,w,, co,do) + W(n)
X =qa,e? Sty woscordo T W

where W (n) is defined above and n € {1,...,N}. We
denote a realization of (2) as

z(n) = a, €79 s(n;ty, w,, o, dy) + w(n)
T =a,el? 8to wo,cords + W-
There are seven deterministic, unknown parameters

6, = [03 a, d, ¢, t, wy qﬁo]

to be estimated. Denote px (x; #) as the probability density
function for X, then given a realization of the data, the log
likelihood function [16] is

I(z;8) = logpx (x;0)
= —Nlog(2nc?) — 5%

~ 202
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The maximum likelihood estimator is the value of 8 that
maximizes [(z; #). Simplifying (3) results in

0.,y = argmax I(z; 0) = argmax {—Nlog(27ra2)
) )

— ke (a4 [l — 20Re (2,0 s0)) ). (@)

This maximization is equivalent to the following sequence
of operations

b
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Thus, if we can solve (5a), then we can then straightfor-
wardly solve the MLE in (4).
Consider the function

2
f(t7 Ld, C, d) = |<ZB, 3t,w,c,d)|
= [(8t0,w0rc0,do 3t7w7c,d>|2 +
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In Appendix A we show that g(t,w, ¢,d) = |(St, wo,co,do> ézt,w,c,d)|2

is unimodal. Thus for ¢ = 0, the likelihood function is also
unimodal and any initialization can be used to find the
maximum. For ¢ > 0 the noise induces local maxima in
the likelihood function and a better initialization is needed.

While the MLE is often consistent as N — oo, it is not
for the signal model in (2). From the likelihood function
in (3) it is seen that the MLE is a least squares estimator.
A necessary condition for a least squares estimator to be
consistent is that for 81 # 02, we must have

. . 2
DN(01, 02) = ||a1 e]d)1 St1,wi1,c1,dr — A2 €]¢2 Stg,wg,C2,d2H — 0

as N — oo [17]. This condition is clearly not satisfied for
the model in (2).

III. THE CRAMER-RAO LOWER BOUNDS FOR ONE
CHIRPLET

In this section we calculate the Cramér-Rao lower
bounds (CRLB’s) corresponding to the signal model in (2).
The bounds are more enlightening if one has an intuitive
notion of what to expect from the bounds. To this end, we
first present several examples that provide this intuition.

In Figure 1 we present the Wigner distributions [6] of six
chirps. The first three examples have a chirp rate of zero,
and the only difference between them is the value of the
duration parameter. The last three examples have a chirp
rate of 1/64, and again the only difference between them
is the value of the duration parameter.

o When the duration is small, the signal is concentrated in
time and thus it should be easy to estimate the location in
time. As the duration increases, it should become harder
to estimate the location in time.

o The estimation of the duration should be analogous to
the estimation of the location in time.

¢ When the duration is small, the chirp rate should be very
difficult to estimate (compare Figures 1(a) and (d)). As the
the duration increases, it should become easier to estimate
the chirp rate.

e When the chirp rate is zero, estimating the location in
frequency should be dual to estimating the location in time.
When the chirp rate is not zero, the signal is not concen-
trated in frequency for large values of the duration (see
Figure 1(f)). In fact, the signal will be the most concen-
trated in frequency for some intermediate duration (see
Figure 1(e)). Thus, for non-zero chirp rates, the estima-
tion of the location in frequency is difficult for both small
and large durations and easiest somewhere in between.
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The Fisher information matrix is defined as [16]

0
%%logpx(X,O) )

1(0)i; = —FE
and the CRLB is the inverse of the Fisher information
o) = 1(0)_1.

This can be computed in closed form for the signal model
in (2)

g
cO) =3
- 2 2 -
> 90 0 0 0 0 0
0 a®> 0 0 0 0 0
0 0 22 0 0 0 0
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The computations are based on the following approxima-
tions

1 p=0,
i(n—t)”exp _2(n—t)2 ~ 0 p=13,
= V2nd 2d 2 p=2,

3d* p=4

that are valid as long as the signal is approximately time-
limited with respect to the sampling interval and approx-
imately band-limited with respect to the sampling rate.
The diagonal elements of the CRLB matrix are bounds on
the variance of unbiased estimators of the unknown param-
eters. Several of these are plotted in Fig. 2, and they are in
agreement with the intuitive arguments presented above.
The CRLB’s provide valuable information for using the
estimated chirp parameters in a classification task. For
instance, if the duration of a chirplet is very small, then
we should not use the chirp rate for classification since our
confidence in this parameter would be very low.

IV. APPROXIMATE MLE FOR ONE CHIRPLET

Solving (5a) exactly is computationally expensive since
it would require an exhaustive grid search over the param-
eter space. Here, we propose a method for solving (5a)
based on the idea of zooming to a time-frequency region.
This zooming will allow high quality estimates with modest
computations. This zooming will also provide robustness
in the case where the signal is actually multiple chirplets
in noise® Other authors [7], [8], [10], [19] have proposed
methods for solving (5a). Of these, only [8] provides good
estimates when there are multiple chirplets present and we
will further discuss this method in Section VIII.

3In this section we are interested in finding an approximate MLE
for a signal model of one chirplet in noise. However, since the ulti-
mate goal is a decomposition of multiple chirplets we allow for this
possibility.

In recent years there has been an explosion of meth-
ods for estimating parameters of chirps and more gener-
ally polynomial phase signals (e.g. [20], [21], [22], [23], [24],
[25], [19], [26], [27], [28], [29], [30], [31], [32)). We chose
and adapted methods from the literature based upon the
following criteria:

« existence of a relationship with the MLE (i.e. not com-
pletely ad-hoc),

« extensibility to multi-component signals (to be discussed
in a subsequent section),

« applicability to the specific problem of interest here (par-
ticularly the Gaussian amplitude modulation),

« robustness in low SNR (e.g. avoiding derivatives), and

« computational simplicity.

Our method for estimating the chirplet parameters is as
follows.

1. Estimate, from a global measure, the chirp rate and
duration (to increase the accuracy of the zoom).

2. Using the estimates of the chirp rate and duration, esti-
mate the location in time and frequency (the actual zoom-
ing).

3. Re-estimate, from a local measure, the chirp rate and
duration.

4. Use a quasi-Newton procedure to find the closest local
maximum of the likelihood function.

Based on the SNR, one could choose to eliminate step 1 or
repeat steps 2 and 3 several times. The computations of
these steps depend on the number of data points NV and a
resolution parameter M that will generally be much smaller
than N. The computations for each of these steps are listed
in Table I, and we now investigate each of these steps in
detail.

A. Global Estimation of Chirp Rate and Duration

We would like to estimate the chirp rate and duration
parameters without any knowledge of the other parame-
ters. Wang et al. [30] proposed the following method for
estimating chirp rate?

¢ = argmax /|Aw(cr, | dr (6)

where A, (6, 7) is the ambiguity function. While there does
not appear to be a straightforward connection with stan-
dard estimators (e.g. MLE), (6) performs well in low SNR
and for multi-component signals.

In Appendix B we show that Wang’s estimator is equiv-
alent to

¢ = argmax / | X (w)]* dw (7
c
where X.(w) is the Fourier transform of the chirped signal
X.(w) = /;U(t) exp {—jct*/2} exp{—jwt} dt.

4We present the time-frequency representations with continuous
variables with the understanding that the implementation for dis-
crete signals is straightforward [33].
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Chirping is a unitary (energy preserving) operator, thus
[|X.||? is the same for all ¢. However, the fourth power in
(7) emphasizes peaky spectra and can thus be considered
a measure of the concentration of X,.

Computing the ambiguity function requires O(N? log N)
computations, however solving (7) over M values of ¢ re-
quires only O(M N log N) computations. Since M <« N
this significantly reduces the necessary computations.

Once the chirp rate has been estimated, we could esti-
mate the duration with

y(t) = (t) exp {—jét*/2}

d = arg max <|7‘y(')|2 750,0,0,d>
d

where r,(7) is the auto-correlation function of y(¢). This
ad-hoc processing removes information regarding the chirp
rate and the location in time and frequency and gives an
exact estimate in the absence of noise.

The statistics of |r,(7)|* are complicated and we do not
have closed form results. Empirical observations show that
the CWGN has the most influence at 7 = 0 and that the
weighted inner product

d = argmax(|ry (), 500.04) (8)
is more reliable, where w(7) is of the form

0 |7| < 70,
w(T) = ’
1 otherwise.

and 79 is small. If we solve (8) over M values of d, then
the computations are O(M N log N).

B. Estimation of Location in Time and Frequency

Once we have an estimate of the chirp rate and duration,
we would like to use this information to estimate the loca-
tion in time and frequency of the chirplet. Denote the spec-
trogram [6] of signal z(t) with window h(t) as Sz(t,w;h).
If é=c¢, and d= d,, then

t
[a] = argl;t,rilax Sa(t,w; 84 ¢ 2 ) )

is the MLE of the location in time and frequency [34]. If
¢ # ¢, or d # d,, then (9) performs worse than the MLE.
However, we show in Lemma 1 of Appendix A that in the
absence of noise, (9) has a unique maximum at t, and w,
for any values of ¢ and d. If we compute M frequency
samples of the spectrogram, then this estimator requires
O(N M log M) computations.

C. Local Estimation of Chirp Rate and Duration

Once we have an estimate of the location in time and
frequency of the chirplet, we would like to re-estimate the
chirp rate and duration. Assuming that we have good esti-
mates of the location in time and frequency, we expect the
local estimates of the chirp rate and duration to be better

than the global estimates. Several authors have proposed
using Radon transformations of time-frequency distribu-
tions as a means for estimating chirp rate [20], [27], [35],
[36], [31].

One method® for estimating chirp rate is based on the
Wigner distribution [27], denoted W, (t,w). Given esti-
mates of the location in time and frequency, ¢ and &, then
the chirp rate estimator is

¢ = arg max /Wz(f—k r,w+ cr)dr. (10)
C
Once the chirp rate has been estimated, we use
5 2
d= arg;nax|<w, Sioed)] (11)

to estimate the duration. Both (10) and (11) have relation-
ships with MLE’s that we now describe.

If t = t, and & = w,, then (10) approaches the MLE as
d, = o0 [27]. For finite d,, (10) performs worse than the
MLE, but in the absence of noise, has a unique maximum
at ¢,

m
C1/d? +2d2(c — c,)?”

Considering the examples in Fig. 1d and e, this is an un-
expected, but desirable result. Even though the Wigner
distributions of the chirps are not concentrated along the
actual chirp rate, we can correctly estimate the chirp rate
for any duration in the absence of noise.

Errors in # and & are generally such that # and & lie along
the instantaneous frequency of the chirp. If this is so, then
(10) still performs well. If the SNR is low enough so that
t and & do not lie close to the instantaneous frequency of
the chirplet, then (10) does not perform well.

Computing the Wigner distribution requires O(N? log N)
computations, but by windowing the signal to M sam-
ples around ¢, the computations can be reduced to
O(M?log M). In practice, the estimator can be calculated
without computing the Wigner distribution [40].

If{ =t,, © = w,, and & = ¢,, then (11) is the MLE
for the duration. By maximizing over M values of d and
windowing the signal to M samples, the computations can
be reduced to O(M?).

/W$(f+r,w+cr)dr

D. Quasi-Newton Maximization

The previous steps provide estimates of the location in
time and frequency, the chirp rate, and the duration. How-
ever, these estimates will generally not correspond to the
global or a local maximum of the likelihood function, and
better estimates can obtained by applying a quasi-Newton
maximization procedure. It is hoped that the previous
steps provide good enough estimates so that the quasi-
Newton maximization provides the MLE. If we perform the
quasi-Newton maximization on M samples centered around
£, then this step requires O(M) computations.

5 Another method for estimating chirp rate is based on the recently
introduced local ambiguity function [37]. This method can be more
reliable for multi-component signals and non-linear chirps [38], [39],
although it is not discussed here due to space limitations.
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V. SIMULATION RESULTS

To evaluate the performance of the approximate MLE
developed in the previous section, we ran a simulation for
the discrete signal defined with parameters N = 127, t, =
64, w, = 0, ¢, = 27/127, d, = 8, a, = 1, and ¢, = 0.
The discrete signal is in CWGN with standard deviations
of 0.2, 0.4, 0.6, 0.8, 0.10, and 0.12, which correspond to
SNR’s ranging from 9.9 dB to -5.6 dB.® This was done for
5000 trials at each noise level.

The true MLE is too computationally expensive to sim-
ulate. We settled for finding the local maximum of the
likelihood function closest to the true value of the parame-
ters, which we call the simulated MLE. For high SNR this
will be a good approximation to the MLE. For low SNR
this will perform better than the MLE, since the local max-
imum of the likelihood function closest to the true value
will not necessarily be the global maximum. For the low-
est SNR, the approximate MLE from the previous section
had a higher likelihood than the simulated MLE for 21 of
the 5000 trials, thus the simulated MLE was too good at
least this many times.

In Fig. 3 we show the CRLB’s, the bias and variance
of the simulated MLE, and the bias and variance of the
approximate MLE developed in the previous section. Only
the results for the time, frequency, chirp rate, and duration
parameters are shown, since the other three depend directly
on these four. One can see that the approximate MLE
performs nearly as well as the simulated MLE for SNR’s
down to about -4 dB. Note that for this problem, the MLE
is not asymptotically efficient and thus does not attain the
CRLB. There are several details that need to be clarified
about these results.

The SNR’s are not a good measure of the difficulty of
the problem. For instance if we changed the simulation by
using N = 255, then the SNR would decrease by about 3
dB, but the decrease in the performance of the estimator
would be minimal (since the extra noise does not overlap
the signal in time). The standard deviation of the CWGN
is a better indicator of the difficulty of the problem, since
it is independent of N.

In this simulation, the estimators of time and frequency
have small bias. However this is due to the fact that the
true value of these parameters lie in the center of their
parameter spaces ([1,127] and [—m, 7], respectively). In
another simulation where we set t, = 32, the estimator
was slightly biased towards 64 since there was more noise
in this direction. Thus the estimators appear to be biased
towards the center of the parameter space (though for the
duration parameter, it is not clear where the center is).

VI. MuLTIPLE CHIRPLETS

Now that we have a solution to the simpler problem of
one chirplet in CWGN, we would like to solve the more
complicated problem of ¢ chirplets in CWGN as expressed
in (1). Direct maximization over 6q + 1 parameters (6 pa-
rameters for each chirplet and ¢2) is not feasible, so we

6Calculated according to 10log;, %2‘.

propose a sequential algorithm that uses the expectation-
maximization (EM) algorithm [41], [42], [43] as a refining
step.

Suppose that we have ¢—1 chirplets fit to the signal z(n)
and that we desire to fit a gth chirplet. The procedure is
1. Compute the residual

q—1 .
e(n) = a(n) — > a; % s(n; i, &4, ¢, d;)

i=1

2. Apply the approximate MLE of Section IV to fit a
chirplet to the residual.

3. Use the g component model and the EM algorithm to
refine the estimates of the ¢ chirplets.

Matching pursuit [3], [8] uses steps similar to 1 and 2 to
obtain a decomposition of multiple chirplets. However, the
addition of step 3 and the convergence properties of the
EM algorithm ensures that we shall always have at least a
local maximum of the likelihood function for the ¢ chirplet
model.

For this problem, there is a natural choice for the com-
plete data [42] in the EM algorithm. The EM algorithm
consists of two steps: an expectation step (E step) and a
maximization step (M step). The E step calculates the
complete data z;(n)

q ] A~
e(n) ==z(n) = Y _ a; €% s(n;ts,&i, i, dy)
=1

i(n) = a; €% s(n; ts, &i, &, di) + Bie(n) i=1,...,4q.

where §; > 0 and ! | 3; = 1. The M step applies the
approximate MLE of Section IV to each of the z;(n) to
refine the estimate of this chirplet. It remains to specify
the values of the ;. A natural choice is §; = % However,
since the M step is much slower than the E step, we propose
the following for 3;

5 = 1 if imod k =0,
‘10 otherwise.

where k is the iteration of the EM algorithm. Thus, we
update only one chirplet at each iteration (the approximate
MLE is applied only once for each M step) and results in
a ¢ fold improvement in speed for each iteration. More
iterations of the EM algorithm may be required, but our
experiences show that the overall algorithm converges more
quickly.

We shall not attempt to explicitly estimate ¢, but rather
continue the algorithm until a specified stopping criteria
has been reached. We shall not investigate specific stop-
ping criteria here, but one could propose several: a test
for the whiteness of the residual, a test comparing the es-
timated amplitude of the gth chirplet with the estimated
noise variance, a test comparing the change in the norm
of the residual with the estimated noise variance, or a test
involving the Akaike information criterion [44].
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VII. EXAMPLES

To illustrate the algorithm of the previous section, we
use an example consisting of a synthetic signal and two
recordings of whale whistles.

The synthetic signal consists of four chirplets and the
sum of the Wigner distributions of the four chirplets is
shown in Fig. 4. The chirplets are close enough to each
other so that it is very difficult for time-frequency distri-
butions (TFD’s) to resolve them. To illustrate this, we
chose the time-varying AOK TFD [45], a method that of-
ten provides better resolution than other TFD’s. In Fig. 4
we show the time-varying AOK TFD of the sum of the four
chirplets and the time-frequency structure of the chirplets
is not clear. Next we applied the algorithm of the previous
section without the EM refinement (step 3) and the sum
of the Wigner distributions of the four estimated chirplets
is shown in Fig. 4. Without the EM refinement the es-
timated parameters are quite different from the true pa-
rameters. Finally we applied the algorithm of the previ-
ous section with the EM refinement and the parameters of
the four chirplets were correctly estimated. This example
illustrates the robustness of our approximate MLE when
multiple chirplets are present.

The next two examples are two whale whistles. In the
approximate MLE of Section IV, the most computationally
expensive step is the global estimation of chirp rate, which
is O(MNlogN) (see Table I). However, we have some
prior knowledge about the whale whistles. We know that
the whale whistles will generally have long durations and
small chirp rates. With this knowledge, we decide to forgo
the global estimate of chirp rate and duration in Section IV
and initialize with ¢ = 0 and d = 100. The most expensive
step is now the estimation of location in time and frequency
and the computations are reduced to O(N M log M). Since
N > M, this is a significant savings in computations.

In Fig. 5a we show the envelope of time series, the spec-
trum in dBs, and a spectrogram (50 dB dynamic range) of a
whale whistle. With M = 128 we fit seven chirplets to the
whale whistle (the stopping criteria was subjective), and
display the results in Fig. 5b. For comparison we ran the
algorithm of Section VI without the EM refinement, and
eight chirplets were required for a similar decomposition
(measured by the norm of the residual). With N = 4000
and M = 128, the computation time was approximately 5
seconds per chirplet on a Sparc Ultra 60 running Matlab.

In Fig. 6 we show an example with another whale whistle.
With M = 128, we fit eight chirplets to the whale whistle.
Without the EM refinement, ten chirplets were required to
obtain a similar approximation.

It is not clear how to evaluate the de-noising capabilities
of the algorithm on the whale whistles. The SNR is low
enough that is not meaningful to compare the time-series
or the spectrum of the data with the approximation. The
spectrograms of the signal and the approximation are very
similar in the regions where the signal is, and while this
is encouraging, it is not a definitive answer. The original
whistles and their approximations were played to an ex-
pert who stated that the approximations sounded like the

original with the noise removed [46].

VIII. DISCUSSION

In this last section we would like to compare the method
proposed here with previously proposed methods with re-
spect to performance (sparsity and high resolution) and
computational complexity [1]. We would like to separate
existing methods into two classes. The first are methods
that use a global optimization strategy to provide high per-
formance at the cost of high computational complexity [1],
[2]. These methods will clearly perform better than the
method proposed here but with much greater computa-
tional complexity. The second are those that use a sequen-
tial procedure (as done here in Section VI) to provide less
sparsity and less resolution but with significantly less com-
putation [3], [8], [9], [10], [7]. Matching Pursuit (MP) [3],
[8] is representative of these methods and we shall present
a detailed comparison between MP and the method pre-
sented here.

Overall, the method presented here and MP have a sim-
ilar strategy. Although not explicitly stated, each iteration
of MP is seeking to solve the MLE for one chirplet, dis-
cussed in Section II. There are two significant differences
between our method and MP. The first difference is that
MP essentially uses a different approximate MLE than the
one that we developed in Section IV. In an attempt to
find the maximum of the likelihood function over time, fre-
quency, chirp rate, and duration, MP uses a coarse, four-
dimensional grid search over the entire parameter space.
The second difference is the addition of the EM refinement
in Section VI. Without the EM refinement there is no
connection with the likelihood function for the ¢ chirplet
model. With the EM refinement, we shall always have at
least a local maximum of the likelihood function for the ¢
chirplet model. We shall now compare our method with
MP for the three criteria of sparsity, high resolution, and
computational complexity.

Sparsity — Our method without the EM refinement will
have similar sparsity to MP. However, the EM refinement
can increase the sparsity as evidenced in the two whale
whistle examples, where the number of chirplets was re-
duced from eight to seven, and from ten to eight, respec-
tively.

High Resolution — If we assume that the signal is really
a sum of chirplets in noise, then the question is “How close
can the chirplets be and still be resolved by the method?”
MP is well known to suffer from poor resolution prop-
erties. Our algorithm will have the potential to resolve
chirplets that are very close, since this corresponds to the
global maximum of the likelihood function. However, when
chirplets are close, the likelihood function will have a com-
plicated structure and many local maxima, so it will be
likely that we find one of these local maxima. As demon-
strated by the synthetic example in Fig. 4 the EM refine-
ment step increases the resolution of our method. We are
currently investigating estimators that are robust to mis-
specification [47] as a means for further improving the res-
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olution.”

Speed — The computations for MP are a O(N?logN)
initialization followed by O(N log N) per chirplet. Our al-
gorithm does not have an initialization step, the compu-
tations are O(INV log N) per chirplet, and by incorporating
prior knowledge, as was done for the whale whistle exam-
ples, it can be reduced to O(N) per chirplet.

Thus, the method described here will generally perform
better than MP with less computation. A limitation of this
method is that it assumes that the signal is well modeled as
a sum of a small number of chirplets. It is straightforward
to apply MP to other signal models, such as a sum of wave-
packets [3] or a sum of splines [5]. In principle, our method
can be applied to any model, but much of the work here
is specific to the chirplet model and would not necessarily
apply to other models.

Much of this paper can be characterized as a straight-
forward application of estimation theory and adaption of
previous work for estimating chirp parameters. The signif-
icant innovations are the technical details discussed in the
appendices and the formulation of the approximate MLE in
Section IV. The primary contribution of this paper is the
conglomeration of ideas from sparse representation theory,
time-frequency analysis, and estimation theory to produce
a powerful method for obtaining sparse representations.

Matlab software for implementing the chirplet decompo-
sition is available at http://mdsp.bu.edu/jeffo.
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APPENDICES
I. LikeLiHOOD FUNCTION

The relations

al(n - t1)2 + az(n - t2)2 =

2
(al +a2) (TL _ a1t1+a2t2) +

ai1+az

a1a2
ai1+taz

(i —t2)* (12)

and

- _ 2
= Ti/aa2jc/2] XP { d—22—:)4c2 }
(13)

2
‘/e—(t/Zd)Z i (et [24wt) gy

will be used in the proofs below. The first is simple alge-
bra and the second comes from the Fourier transform of a
chirp [6].

Lemma 1. The function

f(t’ w) = |<S(n;t07w0acoad0)7

"The model is mis-specified since at each iteration we are looking for
one chirplet in noise, where in reality the signal consists of multiple
chirplets or is something completely different.

s(n; tyw, ¢, d))|”

has a unique mazimum att =t, and w = w, for any values
of to, Wo, Co, do, ¢, and d.

Proof. Without loss of generality it may be assumed that
to =w, = 0. Let a = td?/(d® + d2) then by applying (12)

d?4d?
(-5 0= a)

_w)}

_ 42
fltw) = 27rzdo €xp { 2(d2id§)}

2
‘F’j Coé_c (71 _ _ct ) _F j7l(OJ0

C—Co

Further simplification provides

42 2 d2
fltw) = 27r}id(, €xp { 2(d2id§)} ZeXp{ priry n’?
2
+ e 4 (e, — &) — (w— ct)) }

The discrete approximation to (13) is accurate if we assume
the signal is essentially band limited. Thus

t2
flt,w) = [+ d2— ]2d2d2(c o) eXp{_z(d2+d3)
44242 d2cotde 2
— 2 t - — W
d?+d2+8d?d2(c.—c)? d2+d2
and the function is maximized at t = 0 and w = 0. O

Lemma 2. The function
2
g(c,d) = [{s(n;to, wo, Co, do), 8(n5 Lo, wo, €, d))|
has a unique mazximum at ¢ = ¢, and d = d, for any values
of ty, Wo, Co, and d,.

Proof. Without loss of generality it may be assumed that
to = w, = 0.

2

Zexp{ d2d2n + o5 an}

9(c,d) = 27rdd

by applying (13)
2yd2\2 | o -2
st = ((HE)" + e o)

which has a unique maxima at ¢ = ¢, and d = d,. O

Theorem 1. The function
h(t,w,c,d) = [(s(n;to,ws, o, do), s(n5t,w, c, d)>|2

has a unique mazimum at t = t,, W = W,, C = ¢y, and

d=d,.

Proof. Lemmas one and two. O
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II. AMBIGUITY FUNCTION
Let y(t) = z(t) €7°"/2 and r, (1) = y(t) y* (t + 7), then

/|Az(cr, | dr = / |4, (8 + cr, )| 6(0) dodr =

//Ifly(em)l2 3(6) devdT=/|Ay(0,T)|2 dr
[P ar= [ @

Intermediate steps use well known properties of the ambi-
guity function [6].
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TABLE I
COMPUTATIONS
Step | Computations
Global estimate of ¢ O(MNlogN)
Global estimate of d O(MN logN)
Estimate of ¢ and w O(NMlog M)
Local estimate of ¢ O(M?1og M)
Local estimate of d O(M?)
Quasi-Newton Maximization O(M)
time frequency
3 0.2
0.15
0.1
0.05
0 (X —_—. I E
99 39 04 -21 -4 -56 99 39 04 -21 -4 -56
SNR (dBs) SNR (dBs)
chirp rate duration
0.01 3
0.008
0.006 2 o
0.004 . 3
e 1
0.002 xS
0 A 0B——e = o-—9"
99 39 04 -21 -4 -56 99 39 04 -21 -4 -56
SNR (dBs) SNR (dBs)

Fig. 3. Simulation Results, CRLB (solid line), MLE (dashed line), approximate MLE (dotted line). x corresponds to the standard deviation
and o corresponds to the bias.
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Fig. 4. (a) is the sum of the Wigner distributions of the four chirplets. (b) is the AOK TFD of the four chirplets. (c) is the sum of the
Wigner distributions of the estimated chirplets without the EM refinement step.
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Fig. 5. First example. (a) is the time-series, spectrum, and spectrogram of a whale whistle. (b) is the envelope of the time-series, the
spectrum, and spectrogram of the approximation with seven chirplets.
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Fig. 6. Second example. On the left is the time-series, spectrum, and spectrogram of a whale whistle. On the right is the envelope of the
time-series, the spectrum, and spectrogram of the approximation with eight chirplets.



