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Virtues and Vices of Quartic Time–Frequency
Distributions

Jeffrey C. O’Neill and Patrick Flandrin, Senior Member, IEEE

Abstract—We present results concerning three different types of
quartic (fourth order) time–frequency distributions (TFDs). First,
we present new results on the recently introducedlocal ambiguity
function and show that it provides more reliable estimates of in-
stantaneous chirp rate than the Wigner distribution. Second, we in-
troduce the class of quartic, shift-covariant, time–frequency distri-
butions and investigate distributions that localize quadratic chirps.
Finally, we present a shift covariant distribution of time and chirp
rate.

Index Terms—Chirp modulation, estimation, signal representa-
tion, time–frequency analysis, Wigner distributions.

I. INTRODUCTION

T HE NOTION of a time–frequency distribution (TFD)
[1]–[3] is inherently a concept that is not well defined

[4]. A frequency is something that is measured over a period
of time (e.g., how many times does the heart beat in a minute),
and we would like to specify this frequency description at
an instant of time (e.g., how fast is the heart beating right
now). Nevertheless, TFDs have proven to be useful in many
applications [5].

TFDs have been defined in a variety of ways. They can be
a linear function of the signal like the short-time Fourier trans-
form [1]–[3] and the continuous wavelet transform [2], [3], [6].
They can be quadratic functions of the signal like the Wigner
distribution [1]–[3], the Cohen class [1],1 hyperbolic distribu-
tions [7], and the Bertrand distributions [8]. Others have spe-
cific higher order forms such as the higher order Cohen classes
[9], [10], the L-Wigner distributions [11], [12], and the poly-
nomial Wigner–Ville distributions [13], [14]. Others do not fit
into any of the above categories like the reassigned spectrogram
[15], adaptive kernel distributions [16], and positive distribu-
tions [17].

Despite the abundance of methods for defining TFDs, there
has yet to be an in-depth investigation of quartic (fourth-order)
TFDs. In this paper, we will present results concerning three
different types of quartic distributions. The first is the recently
introducedlocal ambiguity function, the second is the class of
quartic, shift-covariant TFDs, and the third is a distribution of
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1We will use the term “Cohen class” to refer to the class of quadratic, shift-
covariant TFDs [2], [3]. The Cohen class includes more general TFDs [1], but
for the purposes of this paper, we prefer the more restrictive definition.

time and chirp-rate. We show that these quartic methods pro-
vide results that are not obtainable with the simpler, linear or
quadratic distributions.

II. L OCAL AMBIGUITY FUNCTION

Recently, a peculiar, quartic function called thelocal ambi-
guity function(LAF) has been derived [19]–[21] and presented
in several, rather complicated forms [19]. The LAF combines
elements of the Wigner distribution and the ambiguity function,
which are defined as

respectively. One method for computing the LAF is

(1)

In [19], the marginals of the LAF were completely developed.
Two of them are

These marginal properties suggest that the LAF can be inter-
preted as a simultaneous distribution of the four variables cor-
responding to time, frequency, lag, and doppler. In [19], the ge-
ometry of the LAF was investigated for a two-component signal,
and the LAF was applied to the design of signal adaptive ker-
nels for the Cohen class. We will next present several new results
concerning the LAF and apply it to the estimation of instanta-
neous chirp rate.

A. New Properties

The squared modulus of the ambiguity function is its own
Fourier transform; this is referred to as Siebert’s self-transform
property [22], [23]
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It is straightforward to show that the LAF satisfies the same
property for the and variables

(2)

By combining (1) and (2), we arrive at a simpler formulation of
the LAF

(3)
With this knowledge, we can see that the LAF appears in
Janssen’s interference formula [24]

Another peculiar, quartic function was defined by Szu and
Caulfield [25]

(4)

Szu and Caulfield were interested in using their function to com-
pare the time-frequency content of two signals. By comparing
(1) and (4), one can see that the relationship between Szu’s func-
tion and the LAF is remarkably like the relationship between the
Rihaczek distribution2 and the Wigner distribution. The LAF
also satisfies a relation similar to the Moyal formula [2], [3]

B. Estimation of Instantaneous Chirp Rate

Let us suppose that we have a narrowband signal model of
the form

(5)

where is a slowly varying function, and the spectra of
and do not overlap. The instantaneous frequency (IF) of
these signals is often defined as3

and by extending this one step further, one can define the instan-
taneous chirp rate (ICR) as

Several authors have proposed taking Radon (or Hough) trans-
forms of the Wigner distribution [28]–[32] and the ambiguity

2Note that the Wigner distribution is the two-dimensional (2-D) Fourier trans-
form of the ambiguity function and the definition of the Rihaczek distribution
R (t; !) = x(t)X (!) e

3There is much research and much debate about how to define the analytic
signal and instantaneous frequency which is beyond the scope of this paper [1],
[2], [26], [27].

function [33] as a means for estimating chirp rate. Here, we
present examples that show that the method based on the Wigner
distribution does not work well for multicomponent signals and
for nonlinear chirps, whereas a similar method based on the LAF
does work well.

We will use the following three functions:

to define three estimators of ICR at the time–frequency point

The quadratic estimator has been proposed in several contexts
[28]–[32]. If the signal is of the form
(i.e., a linear chirp) and satisfy , then
this estimator will be the maximum likelihood estimator [29].
The two quartic estimators and will be identical to each
other when the signal is a noiseless, chirped Gaussian, but not
for the general case.

We now show two simple examples where the two esti-
mators based on the Wigner distribution provide incorrect
answers, whereas the estimator based on the LAF gives the
correct answer. The first example is to estimate the ICR of a
quadratic chirp. In Fig. 1(a), we show the Wigner distribution
of a quadratic chirp, and we wish to estimate the ICR at the
time–frequency point . In Fig. 1(b), we show the LAF
evaluated at the point . Finally, in Fig. 1(c), we show the
functions , , and . The true ICR at corresponds
to an angle of 0 rad,4 and only the LAF provides the correct
estimate of this angle. For the second example, we repeat the
same procedure in Fig. 1(d)–(f) for a signal composed of two
chirps, where we would also like to estimate the ICR at the
time–frequency point . The chirp centered at
corresponds to an angle of rad, and again, only the LAF
provides the correct estimate of this angle. The other two
estimators give an estimate corresponding to the other chirp
centered at .

The LAF-based estimator correctly determined the ICR for
the noiseless, quadratic chirp in the above example. By a geo-
metrical argument, we expect this to always approximately be
true. In Fig. 2, we show an example that illustrates the computa-
tion of the LAF at a given time–frequency point, where the point
of interest is indicated by the circle. By analyzing (3), one can
see that the LAF at a given time-frequency point is simply the
product of the Wigner distribution with its reflection about this
point. Intuitively, this multiplication of the Wigner distribution
with its reflection serves to eliminate the curvature and empha-
size the tangential information at this point.

4The actual values of the chirp rates are not very intuitive so we plot the func-
tions
 as a function of the angle in the time–frequency plane, where the angle
is measured counterclockwise from the positive time axis.
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Fig. 1. Comparison of three estimators of instantaneous chirp rate.

Fig. 2. Geometrical argument for the LAF based estimator.

For the LAF-based estimator to correctly determine the ICR,
it must satisfy the following condition:

(6)

This condition states that the function will have a local max-
imum or minimum at the true value of the chirp rate. In the Ap-
pendix, we show that for quadratic chirps, the LAF-based esti-
mator always satisfies the above necessary condition. We have
not been able to show that (6) corresponds to a global maximum,
but given the above geometrical argument, we expect this to be
true.

To compare the statistical performance of the three estima-
tors, we ran simulations consisting of a chirped Gaussian in
complex, white, Gaussian noise (CWGN). The discrete signal
used in the simulation is

with , , , , and . In
practice, the location of the chirp will generally not be known
and will have to be estimated. Thus, we incorporated into the
simulations a parameter that indicates the error in estimating
the location of the chirp in time. In Table I, we present the mean
and variance of the three estimators for 1000 trials (with one
exception that will be explained below), where the column
corresponds to the standard deviation of the CWGN. In several
instances, the LAF-based estimatoroutperforms , which
has a clear relationship with the MLE [29]. The estimator
does not perform as well as the other two; therefore, it will not
be examined further.
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TABLE I
BIAS AND VARIANCE OF THETHREELOCAL ESTIMATORS OFCHIRP RATE

• For and , the LAF-based estimator has a
lower bias and variance than. The number of trials for
this example was increased to 5000 to obtain statistical
significance.5

• For and , the LAF-based estimator
has a lower bias and variance than. These differences
are statistically significant with 1000 trails.

• For and 0.02 or 0.05, the LAF-based estimator
has a much lower bias than. These differences are sta-
tistically significant with 1000 trails.

• With very low SNR, the LAF-based estimator will have a
higher variance than .

The LAF-based estimator was used in [34] for the problem of
atomic decomposition with chirped Gabor functions.

III. QUARTIC, SHIFT-COVARIANT DISTRIBUTIONS

In this section, we derive two types of quartic, shift-covariant
distributions. The first is a distribution of time and frequency
and is derived by imposing shift covariance properties [2]. The
second is a distribution of time and chirp-rate and is derived
using a property of cubic polynomials.

A. Time and Frequency

The class of quadratic, shift-covariant TFDs can be expressed
in several forms6

(7)

5We assumed the estimators are Gaussian distributed and used the estimated
means and variances to compute 95% confidence intervals for the means and
variances. If the 95% confidence intervals do not overlap, then we conclude
that the differences are statistically significant.

6We will use the notationsC (t; !;  ), C (t; !; �), andC (t; !; �)
interchangeably to emphasize one form over the other.

and is commonly referred to as the Cohen class [35]. The above
can be derived axiomatically [2], and we will apply the same
procedure here. The class of general,quartic TFDs can be ex-
pressed in the following form:7

If we impose time and frequency shift covariance, i.e.,
constrains the corresponding TFDs as

, then we arrive at the
quartic, shift-covariant class

(8)

which we will denote as the quartic class of TFDs (the shift
covariance will be implied). The quartic class has a dual form,
which is expressed in terms of the Fourier transform of the signal
and can also be expressed in terms of the LAF discussed in the
previous section

(9)

Thus, the LAF is a generating function for the quartic class in the
same way that the Wigner distribution is a generating function
for the Cohen class. Note that Szu’s function is also a generating
function for the quartic class, as is the Rihaczek distribution for
the Cohen class.

Another form that will prove to be useful in subsequent sec-
tions is based on what we will call theambiguous ambiguity
function(AAF)

The AAF has a simple relationship with the ambiguity function

The relationship between the LAF and the AAF is similar to that
between the Wigner distribution and the ambiguity function.8

With the following transformation on the kernel:

we can formulate the quartic class as

(10)

7There is ambiguity in deciding how many of the signal terms should be con-
jugated. Other choices result in distributions with less interesting properties.

8Recall the self-transforming property of the LAF.
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The three forms of the quartic class in (8)–(10) are analogous,
respectively, to the three forms for the Cohen class in (7).

1) Examples:Up to a multiplicative constant, every
Cohen class TFD is also in the quartic class. If we denote
the signal energy as , then

with the kernels being related as

The squared modulus of any Cohen class TFD will be a
member of the quartic class.

where the kernels are related as

An interesting example is the squared modulus of the Rihaczek
distribution, which will be positive and satisfy marginal proper-
ties. There is no Cohen class TFD that satisfies these two prop-
erties [2].9

The product of any two Cohen class TFDs will be in the
quartic class.

where the kernels are related as

An interesting example concerns the strong time support and
the strong frequency support properties [36]. The only Cohen
class TFDs to satisfy both of these are the linear combinations
of the real and imaginary parts of the Rihaczek distribution [37],
[38]. However, if satisfies the strong time support
property, and satisfies the strong frequency sup-
port property, then their product will be in the quartic class and
satisfy both properties.

The following convolutions of two Cohen class TFDs will be
in the quartic class

The second-order L-Wigner distribution [11], [12] and its
dual form are members of the quartic class

with kernels corresponding, respectively, to

9With the more general definition of the Cohen class [1], there exist TFDs
that satisfy these two properties [1], [17].

The intersection of the polynomial Wigner–Ville distribu-
tions (PWVD’s) [13], [14] and the quartic class is

(11a)

(11b)

and will be discussed in more detail below.
Several authors have defined TFDs based on higher order

spectra [9], [10], [39], [40] In particular, the fourth-order Cohen
class (4-CC) [9], [10] was derived by imposing covariance prop-
erties and has the closest connection to the quartic class de-
fined here. The 4-CC has three frequency variables, whereas
the quartic class has only one frequency variable, and there are
many ways to reduce these three variables to one. For example,
if is a member of 4-CC, then

are members of the quartic class. Since there are many ways of
reducing 4-CC to the quartic class, there is no simple way to
prescribe a precise relationship between the two.

2) Localized Distributions:We are now going to investigate
the intersection of the quartic class and the PWVD’s, which are
expressed in (11), when the signal is of the form

(12)

and is an arbitrary cubic polynomial [i.e., is a
quadratic chirp]. We are interested in finding a perfectly
localized distribution of the form

There does not exist a Cohen class TFD that localizes this class
of signals [2].10

When is a cubic polynomial, (11b) simplifies to

(13)

Clearly, if we can solve the following system of equations:

then , , and we
will have the ideal distribution. The solution to the above system
is

10Localized distributions can be obtained with the more general definition of
the Cohen class that includes signal-dependent kernels [1].
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Fig. 3. Parameters that localize quadratic chirps.

which leaves as a free parameter. If

(14a)

or

(14b)

then , , and will be real. The entire set of parameters is
displayed in Fig. 3 as a function of .

While all values of [subject to (14)] will furnish the ideal
distribution for quadratic chirps, the following three values for

:

(15a)

(15b)

(15c)

give the same distribution with three additional, interesting
properties.

First, two of the four coefficients will be the same, which
simplifies the computations.

Second, the distribution of a Gaussian signal will
have the highest concentration in the time–frequency plane. The
distribution of this Gaussian is

where , , and are real functions of . To minimize
the concentration, we want to find the value ofthat maximizes
the functions and [ is irrelevant since it does not
affect the concentration]. Subject to (14), each of these functions
has equal maxima at , , and .

Third, the distributions seem to be more localized for general
signals. By performing a Taylor series expansion

we can express (13) in a more general form

From the above. we know that , , and
. If there existed a value such that for

, then we would have the ideal distribution when
is a polynomial of degree. Unfortunately, the function
is always positive, and therefore, we will not be able to provide
localization when has a degree higher than 3. However, it
can be shown that both and have equal minima
at , , and . Thus, the distribution will be, in a sense, “op-
timized” when is a fourth- or fifth-order polynomial. We
have not shown any general results on the minimization of the

for .
In Fig. 4, examples of the above distribution, with , are

shown for a quadratic chirp, a cubic chirp, and a sinusoid. The
distribution of the quadratic chirp is perfectly localized, whereas
the distribution of the cubic chirp is not. The sinusoid has many
cross terms that appear from the interaction of the positive and
negative frequency components. Since some of the cross terms
are not oscillatory, simple filtering techniques will not attenuate
them, and more sophisticated measures are necessary. The anal-
ysis of the geometry of the LAF in [19] suggests that to eliminate
cross terms, the kernel should be a lowpass filter
in the and variables and a window with compact support
in the and variables. Another method for attenuating cross
terms in polynomial Wigner distributions has been discussed in
[41].

In Fig. 5, we show three different distributions of a signal with
a sinusoidal instantaneous frequency. The first is the Wigner
distribution, the second is the localized distribution with

, and the third is the localized distribution with . The
localized distribution appears more localized for than
for .

3) Properties: There are an abundance of properties that
have been applied to TFDs. To exhaustively show these
properties for the quartic case is difficult and time and space
consuming, and thus, we show a few of the more interesting
ones here.

a) Marginals: There are several marginals that one could
consider for quartic TFDs. In Table II, we list four quartic TFDs
and their corresponding marginals. All of the marginals con-
tain cross terms (like those for the Cohen class), but the cross
terms will be much more prominent for the first, third, and fourth
cases, and thus, the second will likely be preferred in most in-
stances.
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Fig. 4. Examples of the localized distributions.

Fig. 5. Comparison of the Wigner distribution and the localized distributions.

are, respectively, sufficient kernel constraints for the following
marginal properties:

b) Moyal formula: There do not exist any TFDs in the
quartic class that satisfy the following Moyal-like formula

If we assume the above holds for some, then we have

which implies that

which can not be true.
c) Symplectic transformations:The Wigner distribution

is the only quadratic distribution covariant to symplectic trans-

TABLE II
MARGINALS OF SEVERAL QUARTIC TFDS

formations [42]. For the quartic class, the following are, respec-
tively, sufficient kernel constraints for TFDs in the quartic class
to be covariant to scalings, Fourier transforms, and chirp multi-
plications

If for some function , then
the distribution will be covariant to the above three transfor-
mations and, thus, all symplectic transformations. Two distri-
butions from the quartic class that satisfy this are
and .
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Fig. 6. Examples of the time-chirp distribution.

B. Time and Chirp Rate

Consider the time-shift and chirp-shift operators

According to the results of Baraniuk [43], there do not exist
quadratic distributions covariant to these two operators since
these two operators are unitarily equivalent to neither time-shift
and frequency-shift nor to time-shift and scale. However, we
will derive a quartic function covariant to these two operators.

Note that if is a quadratic polynomial, then

holds exactly for all and . From this, it is clear that the Wigner
distribution provides the ideal distribution for linear chirps

If is a cubic polynomial, then

holds exactly for all and . From the above, one can derive the
following distribution of time and chirp rate:

that will provide the ideal time-chirp distribution for quadratic
chirps [as defined in (12) with a cubic polynomial]

This distribution is covariant to the time-shift and chirp-shift
operators. If , then

. The distribution will also be invariant to frequency
shifts.

In Fig. 6, examples of the time-chirp distribution are shown
for the same three signals as in Fig. 4. As a result, the instanta-
neous chirp rate in the three time-chirp distributions are roughly
the derivative of the instantaneous frequency of the three local-
ized distributions. For the quadratic chirp, the distribution is lo-
calized along the linear, instantaneous chirp rate. For the cubic
chirp, the instantaneous chirp rate is a quadratic function, al-
though the distribution is not perfectly localized. The chirp rate
of the sinusoid is zero, and thus, the two auto terms appear at

on the chirp axis. The cross terms have a complicated
structure and obscure the auto terms.

C. Discussion

The quartic distributions introduced here have properties that
are not obtainable with quadratic distributions. However, the
quartic nature of these distributions presents other complica-
tions.

The general quartic class of TFDs will have many more cross
terms than quadratic distributions. The analysis of the cross
terms in the LAF in [19] suggests a lowpass filtering kernel in
time and frequency and a windowing kernel in lag and doppler.
However, the manipulation of these four-dimensional functions
will likely be prohibitive computationally. The localized distri-
butions provide one means of reducing the dimensionality and
the computational complexity, and perhaps other methods of re-
ducing the dimensionality will also lead to interesting distribu-
tions.

The localized distributions have the same computational
complexity as quadratic distributions in the Cohen class.
While these distributions provide interesting representations
for narrowband signals of the form (5), there are many more
cross terms for multicomponent signals, some of which are
not oscillatory. A method for attenuating cross terms in the
PWVD’s (of which the localized distributions are a subset)
has been proposed in [41]. A numerical difficulty is that the
localized distributions require interpolation of the signal to
irrational factors.

The time-chirp distribution has the same computational
complexity as distributions in the Cohen class and provides
interesting distributions for narrowband signals, but it has many
cross terms for multicomponent signals and requires interpo-
lation to irrational factors. The cross terms in the time-chirp
distribution have a complicated structure and an analysis of
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the interferences [44], [45] could lead to methods for their
attenuation.

IV. CONCLUSIONS

In this paper, we have extolled the virtues of several types
of quartic TFDs. First, we presented new results on the local
ambiguity function and showed that it can provide a better es-
timate of instantaneous chirp rate than the Wigner distribution,
particularly in high SNR and for nonlinear chirps. Second, we
introduced the class of quartic, shift-covariant TFDs (the quartic
class) and showed that its members can have properties that are
not obtainable with the Cohen class. An example that was pre-
sented in detail is the localization of quadratic chirps. Third, we
presented a covariant distribution of time and chirp-rate, which
is not possible with quadratic distributions.

The quartic distributions also present complicated vices:
those of increased computational complexity and a greater
number of cross terms. In this paper, we expose these vices
without providing any significant contributions for overcoming
them. However, we provide a framework for further investiga-
tion of the quartic distributions in the same way that the Cohen
class has provided the means for creating quadratic distribu-
tions that ameliorate the vices of the Wigner distribution. Other
authors have recently presented methods for ameliorating the
vices of quartic distributions [14], [41], and it is hoped that our
results will engender new research in this area.

MATLAB software for implementing several of these quartic
distributions is available at http://mdsp.bu.edu/jeffo.

APPENDIX

Our signal is a quadratic chirp, and thus, , and
. The Wigner distribution of this

signal is

We show here that for the above signal and any time–frequency
point along the IF of the signal , the LAF-based esti-
mator satisfies the following necessary condition:

We start with

where the last step comes from the Fourier transform of a chirp
signal. Applying the derivative results in

which will be 0 when .
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