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A Function of Time, Frequency, Lag, and Doppler
Jeffrey C. O’Neill, Member, IEEE, and William J. Williams,Senior Member, IEEE

Abstract—In signal processing, four functions of one variable
are commonly used. They are the signal in time, the spectrum, the
auto-correlation function of the signal, and the auto-correlation
function of the spectrum. The variables of these functions are
denoted, respectively, as time, frequency, lag, and doppler. In
time–frequency analysis, these functions of one variable are
extended to quadratic functions of two variables. In this paper,
we investigate a method for creating quartic functions of three of
these variables as well as a quartic function of all four variables.
These quartic functions provide a meaningful representation of
the signal that goes beyond the well-known quadratic functions.
The quartic functions are applied to the design of signal-adaptive
kernels for the Cohen class and shown to provide improvements
over previous methods.

I. INTRODUCTION

A SIGNAL and its spectrum are two commonly
used linear representations of a signal. The spectrum is

obtained by applying a Fourier transform to the signal

(1)

Two commonly used quadratic functions of the signal are the
auto-correlation of the signal and the auto-correlation of the
spectrum

The variables of the above four functions will be denoted,
respectively, as time, frequency, lag, and doppler. In
time–frequency analysis [1]–[5], we extend these four
functions of one variable to quadratic functions of two
variables. Some examples of these quadratic functions are
the the local auto-correlation function (LACF) of the signal,
the LACF of the spectrum, the Wigner distribution, and
the ambiguity function. These four functions are defined,
respectively, as

(2a)

(2b)
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(2c)

(2d)

and are all related to each other via Fourier transforms.
However, there are many other quadratic functions of the

signal similar to the four defined above. For example, there
are many “meaningful” functions of time and frequency. Some
examples are spectrograms, the Rihaczek distribution, and the
exponential distribution by Choi and Williams. As a means
for encompassing the different representations of a signal, we
will loosely define the concept of a domain.

Definition: Given a set of variables , a domain is the set
of meaningful representations of the signal that are functions
of the variables .

The name assigned to a domain will correspond to the
variables of the domain. For example, the signal is a rep-
resentation of the signal in the time domain, and the spectrum
is a representation of the signal in the frequency domain.
Other meaningful representations of the signal in the time and
frequency domains are the squared magnitude of the signal

and the squared magnitude of the spectrum .
The functions listed above in (2) are members of the time-lag,
doppler-frequency, time–frequency, and doppler-lag domains,
respectively.

In (2), we list quadratic functions of two of the following
four variables:

• time;
• frequency;
• lag;
• doppler.

In this paper, we provide a method for creating functions of
three of the above four variables, as well as a function of all
four variables that will be called thelocal ambiguity function.
These functions will all be quadralinear or quartic functions
of the signal. Although other quartic functions of have been
considered in the context of time–frequency analysis [6]–[10],
these functions depend solely on time and frequency variables.
The functions defined here are fundamentally different in
that they include variables of lag and doppler in addition
to variables of time and frequency. Jones and Baraniuk [11]
have considered a function of time, lag, and doppler, and we
investigate in detail the relationships between their function
and the functions defined here in Section VI.

The paper is organized as follows. In Section II, we define
several one-dimensional (1-D) Wigner mappings and apply
them to create four signal representations that are functions
of three variables. In Section III, we define several two-
dimensional (2-D) Wigner mappings and apply them to create
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a function of all four variables. In Sections IV and V, we
investigate the marginals of these newly defined functions
and compute some examples that reveal properties of these
functions. In Section VI, the specific functions are general-
ized to create classes of functions that are analogous to the
Cohen class. In Section VII, we apply the new functions to
developing signal-adaptive kernels for the Cohen class that
are functions of time and frequency.

II. WIGNER MAPPINGS

In this section, we are going to create some operators (not
necessarily linear) that are equivalent to the Fourier transform
operator and the operation of computing a Wigner distribution
from a signal [1]–[5]. The operators, which we will define,
provide a level of abstraction that will simplify notation and
provide a clearer explanation of the concepts. To simplify
the language, we will refer to the signal and the spectrum
as the “two linear functions” and the Wigner distribution,
the ambiguity function, the temporal LACF, and the spectral
LACF as “the four quadratic functions,” even though there are
clearly other linear and quadratic functions of the signal. The
linear and quadratic functions and the relationships between
then are well established [1]–[5].

The first operator will be called a time Fourier mapping
(FM) and is equivalent to the well-known Fourier transform
operator. The time FM will be denoted as1

Similarly, the frequency FM will be equivalent to the inverse
Fourier transform operator and will be denoted as

We have purposely avoided using the word “inverse” in
defining these mappings, even though one is clearly the inverse
of the other. The reason for this will soon be clear. The time
FM and the frequency FM provide a slightly more abstract
approach to computing the spectrum from the signal and vice
versa.

Next, we would like to create operators to compute the
Wigner distribution from the signal and the spectrum. The
time Wigner mapping (WM) will be defined as the operator
that computes the Wigner distribution from the signal and will
be denoted as

Similarly, the frequency WM will be defined as the operator
that computes the Wigner distribution from the spectrum and
will be denoted as

The above two equations indicate that the time WM of the
signal is identical to the frequency WM of the spectrum. This
is a well-known result [1]–[5] that we express in the notation
of this section and will be applied later in this section.

1The “-” denotes the sign of the complex exponential in the Fourier
transform.

Theorem 1: If , then

.
By applying the Fourier mappings and Wigner mappings,

we can convert between the two linear functions, between the
four quadratic functions, and from the two linear functions
to the four quadratic functions. Since the Wigner mappings
are not inverses of each other, we chose to call them a
time Wigner mapping and a frequency Wigner mapping.
The Fourier mappings are inverses of each other, but, to be
consistent, we chose to call them a time Fourier mapping and a
frequency Fourier mapping (as opposed to a Fourier mapping
and an inverse Fourier mapping).

Each of the four quadratic functions depend on two of
the four variables of time, frequency, lag, and doppler. The
creation of the Wigner mappings provides a method for
creating functions that depend on three of the four variables
and represent the signal in new domains. To do this, compare
the operation of the time FM with the time WM

The time FM converts the signal from the (linear) signal to the
(linear) spectrum, whereas the time WM converts the (linear)
signal to the (quadratic) Wigner distribution. To obtain a joint
representation, we simply replace a Fourier mapping with a
Wigner mapping. This can be used to create quadralinear or
quartic functions of three variables. For example, the temporal
LACF and the ambiguity function are related through a time
FM

(3)

To obtain a function of time, lag,and doppler, we simply
replace the time FM in (3) with a time WM

where the choice of notation will become clear in a subsequent
section. This function will be unimaginatively called the
time-lag-doppler function (TLDF) and is a member of the
time-lag-doppler domain. From Theorem 1, we know that we
can also compute the TLDF by applying a frequency WM to
the ambiguity function

By applying the above method to the other quadratic func-
tions, we can create three other quartic functions that are
members of a corresponding three-variable domain. These new
functions will be called the frequency-lag-doppler function
(FLDF), the time-frequency-lag function (TFLF), and the
time-frequency-doppler function (TFDF). They are defined,
respectively, as

(4)

(5)

(6)
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It is easily seen that the four, newly defined, quartic functions
will always be real valued. Unlike the four quadratic functions,
we cannot convert a signal between the four quartic functions.
We will now investigate each of the quartic functions in more
detail.

A. The Time-Lag-Doppler Function

The TLDF can be written simply in terms of the signal

(7)

As seen from (7), the TLDF is clearly a quartic function
of the signal. We will now show two interesting properties
of this function. First, the TLDF of and
are the same; therefore, the TLDF is invariant to phase and
frequency shifts. However, the TLDF will be covariant to time
shifts. Second, the TLDF can be interpreted as a time-localized
ambiguity function.2 We will demonstrate this second property
analytically for a simple signal and computationally for a more
complicated signal.

For a signal with a quadratic instantaneous frequency (IF)

the TLDF has a simple, closed-form solution3

(8)

We will show that the TLDF of this signal can be interpreted
as a time-localized ambiguity function. To do this, we will
locally approximate the signal with chirp functions. At
time , the chirp that provides the “best” approximation
to is

where is an arbitrary constant. Our meaning of “best”
is illustrated with an example in Fig. 1. At time , the
instantaneous frequency and the derivative of the instantaneous
frequency of and will be the same. The magnitude
of the ambiguity function of is

which is identical to (8) evaluated at . This will clearly
hold for any time . Thus, for the quadratic chirp, the TLDF
can be interpreted as a time-localized ambiguity function.

The interpretation of the TLDF as a time-localized ambi-
guity function also holds for more complicated signals. For
example, consider a signal with a sinusoidal instantaneous
frequency, whose Wigner distribution and ambiguity function

2We could also think of the TLDF as a doppler localized temporal LACF
function, but this is not as intuitive.

3Note that the Wigner distribution of this signal does not have a simple,
closed-form expression.

Fig. 1. Approximation of a quadratic chirp with a linear chirp.

are shown in Fig. 2. Fig. 2 also contains examples of the TLDF
of this signal at time 48 and at time 64. We can see that the
TLDF of the signal at time 48 and time 64 is similar to the
ambiguity functions of the chirps that locally approximate the
signal at time 48 and at time 64. The ambiguity function of
the signal is dominated by the characteristics of the signal
near time 64 since this is where the signal contains most of
its energy. The TLDF appears to give meaningful information
about the ambiguity function that is localized in time.

B. The Frequency-Lag-Doppler Function

The FLDF can be written simply in terms of the spectrum
of the signal

(9)

Comparing the above with the TLDF in (7), it is clear that
FLDF can be considered to be the dual of the TLDF. The
properties of the FLDF will also be dual to the properties of
the TLDF.

• The FLDF will be invariant to phase shifts and time shifts
but covariant to frequency shifts.

• The FLDF of a signal with a quadratic group delay (GD)
will have a simple form analogous to (8).

• The FLDF can be interpreted as a frequency localized
ambiguity function.

C. The Time-Frequency-Lag Function

The TFLF can be written simply in terms of the signal

(10)

This function looks similar to the previous two, but its
properties are quite different.
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(a)

(b) (c) (d)

Fig. 2. Wigner distribution, ambiguity function, and TLDF of a signal with a sinusoidal frequency modulation (a) Wigner distribution. (b) Ambiguity
function. (c) TLDF at time 48. (d) TLDF at time 64.

• The TFLF will be covariant to both time shifts and
frequency shifts.

• There is no simple expression for the TFLF of a signal
with a quadratic IF or a quadratic GD.

• The TFLF of a chirp is identical
to the Wigner distribution of the chirp.

D. The Time-Frequency-Doppler Function

The TFDF can be written simply in terms of the spectrum
of the signal

(11)

Comparing the above with (10), we can see that the TFDF is
the dual of the TFLF. In addition, the properties of the TFLF
also hold for the TFDF.

III. T WO-DIMENSIONAL WIGNER MAPPINGS

Next, we would like to create a function that depends on all
four of the variables of interest. To do this, we will focus on
the relationship between the temporal LACF and the spectral

LACF

As before, we can replace the time FM’s with time WM’s to
obtain a function of all four variables. However, since the time
WM operator does not commute

and we will have two different functions depending on the
order of the operators. In addition, this function would be an
eighth-order function of the signal rather than a fourth-order
function of the signal. This is undesirable since we would
like the different methods for defining this function to be
consistent. It would also be preferable for this function to be
a quartic function of the signal.

We will approach this problem from a slightly different
perspective by creating a 2-D time FM operator that will be
identical to applying two 1-D time FM’s in succession. The
2-D time FM will be denoted as

Similarly, we will also define a 2-D frequency FM denoted as
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Fig. 3. Relationships between the linear, quadratic, and quartic functions.
Single arrows represent Fourier mappings, and double arrows represent
Wigner mappings.

and a 2-D mixed FM denoted as

Next, we will create 2-D Wigner mappings that will corre-
spond to the above 2-D Fourier mappings. First, a 2-D time
WM will be identical to the operation that computes a 2-D
Wigner distribution from an image

The 2-D frequency WM mapping will be identical to the
operation that computes a 2-D Wigner distribution from the
spectrum of the image

Finally, the 2-D mixed WM will be defined and denoted as
expected.

These 2-D mappings provide a more desirable method for
computing a function of all four variables. To define this
function, we will again use the relationship between the
temporal LACF and the spectral LACF

To define what we will call thelocal ambiguity function(LAF),
we will replace the 2-D time FM with a 2-D time WM

It can be shown that the methods for deriving the LAF are
consistent within this framework.

Theorem 2:

The proof of this theorem is straightforward, so it will not
be presented here. A summary of the relationships between
the two linear functions, the four quadratic functions, and the
five quartic functions is shown in Fig. 3.

IV. M ARGINALS

Given a distribution function, a marginal is obtained by
integrating over one of the variables of the function. The
marginals of the Wigner distribution are

Marginals can be computed from the quartic functions
analogous to the marginals of the quadratic functions. We will
call the integral of the quartic functions over one variable
a first-order marginal, over two variables a second-order
marginal, and so forth. Fortuitously, the first-order marginals
of the LAF are the other four quartic functions

This property motivated the choice of notation for the quartic
functions.

The second-order marginals of the LAF will be the first-
order marginals of the other four quartic functions. Because of
this, we will now only consider the marginals of the LAF. The
second-order marginals provide some more fortuitous results
as in

There are two other second-order marginals that would be
members of time-doppler and lag-frequency domains. How-
ever, since quadratic functions of these variables do not exist,
their meaning is unclear.

The third-order marginals also provide interesting relation-
ships as in



794 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999

Fig. 4. Marginals of the LAF. The lines represent integration with respect to
one of the variables of the function.

where

convolution;
auto-correlation function of ;
auto-correlation function of .

Finally, the fourth-order marginal of the LAF is

The marginals of the quartic functions are summarized in
Fig. 4.

V. PROPERTIES OF THELOCAL AMBIGUITY FUNCTION

We will now investigate the LAF in more detail. The LAF
can be expressed simply in terms of both the signal and the
spectrum as in

and, like the Wigner distribution, is self dual. To gain further
insight into the LAF, we will analytically compute this func-
tion for some simple signals. For the first example, let our
signal be a Gaussian windowed chirp

The LAF of this chirp is

The LAF has properties corresponding to an ambiguity func-
tion localized in time and frequency (similar to the TLDF and
the FLDF). For and that correspond to the instantaneous
frequency of the signal

and

the LAF will be a constant times the squared magnitude of
the ambiguity function of the chirp. For and that do not
satisfy the above conditions, the LAF will be essentially zero.

For a chirp function, the ambiguity function is, in a sense,
“stationary.” What we mean by this is that the “localized”
ambiguity function is the same for all parts of the signal.
This is revealed in the LAF since the time and frequency
variables are separable from the lag and doppler variables. For
more complicated functions, like the one shown in Fig. 2, the
variables will not be separable since the ambiguity function
will not be “stationary.” Examples of these more complicated
signals show that the LAF still satisfies an intuitive notion of
being a time and frequency localized ambiguity function.

For a two-component signal, the situation becomes more
complicated. Since the LAF is quartic rather than quadratic,
there will be more cross terms for multicomponent signals
than in quadratic functions like the Wigner distribution. In
the general case, the LAF of a two component signal

will be

other terms

We will use time- and frequency-shifted versions of a Gaussian
signal

to compare the cross terms in the Wigner distribution with the
cross terms in the LAF. The Wigner distribution and LAF of
the Gaussian signal are multidimensional Gaussians

We will now consider the two-component signal

and define the following quantities to simplify notation:

The Wigner distribution of this signal is
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Fig. 5. Geometry of the LAF for a two component signal (four dimensions flattened into two dimensions). The open circles represent the auto terms, and the
dark circles represent the cross terms. Next to each circle is the number of the term in (12), along with the location in the four-dimensional space.

and consists of two auto terms and one cross term. The LAF
of this signal is

(12)

where we will call the first four terms auto terms and the last
six terms cross terms.

The first two terms in (12) correspond to the LAF’s of the
individual Gaussians. The third and fourth terms represent the
cross-correlation of the two Gaussians and are analogous to
the cross-correlation terms that appear in the auto-correlation
function of the signal and the spectrum

The auto-correlation functions have terms centered at
and ; therefore, a function of time, frequency,

lag, and doppler should also have terms centered at
and . The first four terms of the LAF represent
the distribution of the two Gaussians simultaneously in time,
frequency, lag, and doppler. For these reasons, the first four
terms of the LAF will be called auto terms analogous to the
auto terms of the Wigner distribution.

The last six terms in (12) have properties that are very sim-
ilar to the properties of cross terms in the Wigner distribution
[5]. Each of the last the last six terms is centered directly
between two of the first four terms. In addition, each of the
last six terms is oscillatory, and the direction of the oscillation
is perpendicular to the line connecting the two auto terms.
Finally, between every pair of auto terms lies one of the last
six terms. Again, for these reasons, the last six terms will be
called cross terms. A pictorial representation of these ten terms
is shown in Fig. 5, where the number of the term is indicated
along with its position in four-dimensional (4-D) space.

VI. CLASSES OFQUARTIC FUNCTIONS

The quartic functions that we have defined are, as we will
show, similar to the Wigner distribution. By applying a kernel
to the Wigner distribution, we can create an infinite number of
time–frequency distributions. In the same way, we can apply
kernels to the quartic functions to create an infinite number of
distributions of three and four variables.

Jones and Baraniuk have developed a method for creating a
function of time, lag, and doppler, which they call a short-time
ambiguity function (STAF) [11]. They developed this function
for the purpose of creating signal-adaptive kernels that vary
over time. We will investigate this idea more extensively in
the next section, but for now, we would like to compare the
STAF with the five quartic functions and provide a means for
creating other functions of three and four variables.

To compute the STAF at time , first apply a window
to “localize” the signal to time



796 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999

and then compute the ambiguity function of this windowed
signal

STAF

This function, like the short-time Fourier transform, will be
complex valued. Therefore, in practice, Jones and Baraniuk
used the squared magnitude of this function, which we shall
call an “ambiguigram”

AG STAF

The ambiguigram is similar to the spectrogram and provides
an intuitive method for creating an ambiguity function that is
localized in time.

We will now compare the methods for computing the am-
biguigram and the TLDF with the methods for computing the
Wigner distribution and the spectrogram. In the notation that
we have established, the spectrogram and Wigner distribution
can be computed as

SG

and the ambiguigram and TLDF can be computed as

AG

which shows that the relationship between the ambiguigram
and the TLDF is analogous to the relationship between the
spectrogram and the Wigner distribution. This is enlighten-
ing in that the tradeoffs between the ambiguigram and the
TLDF are immediately apparent because of the established
tradeoffs between the spectrogram and the Wigner distribution.
Further, it is straightforward to create a class of time-lag-
doppler functions similar to the Cohen class of time–frequency
distributions

where is a 3-D kernel function. Ambiguigrams will
be members of this class where the kernel will be a function
of the window .

In a similar manner, we can construct classes from the other
four quartic functions. We shall present only the class for the
LAF as it encompasses all of the others

where is a 4-D kernel function that is analogous
to the kernel in the Cohen class. The above class generalizes
the ambiguigram of Jones and Baraniuk in two ways. First, a
method is given for creating an infinite number of functions

of time, lag, and doppler. Second, their three-variable function
is extended to create a function of all four variables. Since
the purpose of creating the ambiguigram was to create signal-
adaptive kernels that vary over time, we will now investigate
the use of the LAF to create signal-adaptive kernels that vary
over time and frequency.

VII. A DAPTIVE KERNEL DESIGN

Time-frequency distributions in the Cohen class can be
computed by convolving the Wigner distribution with a kernel
function

The purpose of the kernel is to filter out cross terms and
maintain the resolution of the auto terms. Since the structure of
the cross terms and auto terms in the Wigner distribution varies
greatly for different signals, kernels that work well for one
signal will not necessarily work well for other signals. Because
of this, Baraniuk and Jones [12], [13] have proposed methods
for creating signal adaptive kernels. Their algorithms use the
ambiguity function as a means for finding “good” signal-
adaptive kernels. It has been observed that in the ambiguity
function, the auto terms lie near the origin, whereas the cross
terms tend to lie away from the origin [14], and the methods
of Baraniuk and Jones exploit this observation.

The adaptive kernel methods [12], [13] extend the func-
tionality of the Cohen class. However, there are further im-
provements that can be made to this method. The purpose of
a TFD is to analyze signals whose characteristics change over
time. The above methods choose a kernel that is adapted over
the entire signal. However, since the signal is nonstationary,
it is reasonable to assume that a kernel that works well at
one time will not necessarily work well at another time. Jones
and Baraniuk recognized this and extended their algorithm to
design signal-adaptive, time-varying kernels [11]. This method
can be formulated in the time–frequency plane as

where the time-varying kernel is created by applying the radi-
ally Gaussian kernel (RGK) algorithm [12] to the ambiguigram
that was introduced in the previous section.

We will now apply the RGK algorithm of Jones and
Baraniuk to a smoothed version of the LAF for the purpose
of creating signal-adaptive kernels that vary over time and
frequency. There are two potential advantages in using the
LAF over the ambiguigram. First, the LAF should be able
to provide better resolution in the same way that the Wigner
distribution provides better resolution than the spectrogram.
Second, the LAF provides greater flexibility by allowing the
kernel to vary over time and frequency instead of just over
time.

The implementation of this method is conceptually simple
but extremely expensive computationally. We will implement
this method using the framework of the type II Cohen class
that was introduced in [15]–[17]. The steps for implementing
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(a) (b)

(c) (d)

Fig. 6. Comparison of the Wigner distribution with the three different methods for the first example signal. (a) Wigner distribution. (b) Method 1. (c)
Method 2. (d) Method 3.

the signal-adaptive, time-, and frequency-varying kernels are
as follows.

• Compute the Wigner distribution of the signal.
• Compute the LAF of the signal.
• Apply 4-D smoothing to to obtain

. This is necessary since the cross terms
in the LAF prevent the RGK algorithm from finding a
“good” kernel. We used a 4-D version of
for our smoothing function.

• For each point in the time–frequency plane

—apply the RGK algorithm to to com-
pute the kernel at ;

—apply the kernel to calculate the TFD at .

We will compare the TFD’s generated from three different
methods for kernel design.

Method 1) The first method uses the binomial kernel [18].
This kernel is fixed (does not vary over time
nor frequency) and is not signal adaptive.

Method 2) The second method uses the ambiguigram to
compute a signal-adaptive kernel that varies
over time [11].

Method 3) The third method, as described above, uses
the LAF to create a signal-adaptive kernel that
varies over time and frequency.

All three methods have a window length parameter that
provides a tradeoff between maintaining resolution of the auto
terms and suppressing the cross terms. The window lengths
used will be indicated in each example. Methods II and III also
have “volume” parameter that is part of the RGK algorithm.
In all examples, we will use a volume parameter of 4.

It is difficult to compare different methods for computing
TFD’s as there is no clear measure of the “goodness” of a TFD.
We will present pictures of the TFD’s obtained by using the
three different methods and provide a qualitative comparison
of the cross term suppression and resolution. We will test the
three different methods with two synthetic signals. In order to
achieve as fair a comparison as possible, all TFD’s have been
normalized to have the same total volume, and the dynamic
range of the images is the same within each example.

Example 1: The first test signal consists of three compo-
nents: two short, Gaussian pulses centered at times 32 and 96
and a component with a sinusoidal frequency modulation. In
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Fig. 6, we present the Wigner distribution of this signal along
with three TFD’s computed by applying each of three methods
detailed above. For this relatively simple signal, neither of the
adaptive methods (methods II and III) provides a significant
advantage over the much simpler binomial kernel (method
I). There is a slight indication of the advantages of method
III over method II in Figs. 6(c) and (d). Due to the poorer
resolution of the ambiguigram, we can see cross terms close to
the signal as indicated by the arrows in Fig. 6(c). We can also
see that method III in Fig. 6(d) provides the highest resolution
near time 64.

Example 2: The second test signal consists of four com-
ponents: two complex exponentials at frequencies of 0 and

rad and two components with a sinusoidal instantaneous
frequency (IF) centered at frequencies of and rad.
Time–frequency distributions are computed using the three
different methods and are shown in Fig. 7. The binomial distri-
bution represents the auto terms well but does not attenuate the
cross terms as well as the other methods. Method II attenuates
the cross terms better than the binomial distribution, but the
sinusoidal IF components are “linearized.” It is not clear what
causes the linearization in the method II, but it could be that
the RGK algorithm is adapting to the complex exponentials
rather than the sinusoidal IF components. Method III provides
the best cross term attenuation and does not suffer from the
linearization seen in method II. Method III does not resolve
the sinusoidal component well at time 80. The reason for this
is that since the auto terms are close together at that point, the
cross terms in the LAF are more difficult to attenuate, and this
prevents the RGK algorithm method from finding a “good”
kernel.

The methods of Jones and Baraniuk provide a clear means
for increasing the versatility of the Cohen class. The LAF,
which has been derived in this paper, provides a means
for generalizing the ambiguigram of Jones and Baraniuk
and further increasing the versatility of the Cohen class. In
addition, the LAF provides insight into the ambiguigram in the
same way that the Wigner distribution provides insight into the
spectrogram. The kernels generated by the LAF provide some
improvement over the kernels generated by the ambiguigram at
the expense of greatly increased computations. Kernel design
with the LAF may be too expensive computationally to be
practical, but this example affirms that the LAF can indeed
be applied as an ambiguity function localized in time and
frequency.

VIII. C ONCLUSION

In signal processing, we are often interested in the following
four functions of one variable: the signal, the spectrum, auto-
correlation function of the signal, and the auto-correlation
function of the spectrum. In time–frequency analysis, we
extend these functions of one variable to several quadratic
functions of two variables. In this paper, we further extend the
concepts of time–frequency analysis to create quartic functions
of three and four of these variables. The function of all four
variables has properties of an ambiguity function localized in
time and frequency, and thus, it is called thelocal ambiguity

(a)

(b)

(c)

Fig. 7. Comparison of the three different methods for the second example
signal. (a) Method 1. (b) Method 2. (c) Method 3.

function. The local ambiguity function is successfully applied
to the design of time- and frequency-varying kernels for the
Cohen class and shown to have advantages over previous
methods at the cost of greatly increased computations.
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