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Shift Covariant Time–Frequency
Distributions of Discrete Signals

Jeffrey C. O’Neill, Member, IEEE, and William J. Williams,Senior Member, IEEE

Abstract—Many commonly used time–frequency distributions
are members of the Cohen class. This class is defined for continu-
ous signals, and since time–frequency distributions in the Cohen
class are quadratic, the formulation for discrete signals is not
straightforward. The Cohen class can be derived as the class of
all quadratic time–frequency distributions that are covariant to
time shifts and frequency shifts. In this paper, we extend this
method to three types of discrete signals to derive what we will
call the discrete Cohen classes. The properties of the discrete
Cohen classes differ from those of the original Cohen class. To
illustrate these properties, we also provide explicit relationships
between the classical Wigner distribution and the discrete Cohen
classes.

I. INTRODUCTION

I N SIGNAL analysis, there are four types of signals com-
monly used. These four types are based on whether the

signal is continuous or discrete and whether the signal is
aperiodic or periodic. The four signal types are listed in Table I
along with their properties in the time domain. For each of the
four types of signals, there is an appropriate Fourier transform
pair, so it seems plausible that there should exist four types of
time-frequency distributions (TFD’s). The Cohen class [1], [2]
(with the restriction that the kernel is not a function of time and
frequency and is also not a function of the signal) can derived
axiomatically as the class of all quadratic TFD’s for type I
signals that are covariant to time shifts and frequency shifts
[3]–[5]. In this paper, we will investigate the quadratic, time
and frequency shift covariant classes of TFD’s for the other
three types of signals. The original class will be renamed the
type I Cohen class, and the other three classes will be denoted
the type II, III, and IV Cohen classes.

There are three common methods for deriving TFD’s for
type I signals. The first uses operator theory [1], [2], the second
uses group theory [6], and the third uses covariance properties
[3]–[5]. In this paper, we choose to use the covariance-based
approach to investigate TFD’s for signals of types II, III, and
IV because of the simplicity and directness of the mathematics.
Narayananet al. [7], [8] have investigated the formulation
of a type IV TFD’s using operator theory. Richmanet al.
have investigated type IV Wigner distributions using group
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TABLE I
DEFINITIONS OF THE FOUR TYPES OF SIGNALS

theory [9]. There has also been much other work investigating
methods for computing TFD’s from sampled signals [10]–[30].
The results presented here are more complete than the above
results in that we give a closed form for the complete class of
shift-covariant TFD’s for signals of types II, III, and IV. Since
the class of AF-GDTFD’s introduced by Jeong and Williams
is quadratic and shift-covariant, it is clearly a subset of the
type II Cohen class; however, nothing more can be said at this
point. The type IV Wigner distribution produced by Richman
et al. [9] and the distributions produced by Narayananet al.
[7] are members of the type IV Cohen class, but they have not
generated a class of type IV distributions.

This paper is organized as follows. Section II presents some
basic characteristics of TFD’s for each of the four signal types.
Section III repeats a derivation of the type I Cohen class as the
class of time and frequency shift covariant, quadratic TFD’s.
This derivation will be extended to derive the other three
Cohen classes. Sections IV–VI will present results concerning
the three discrete Cohen classes, and Section VII will present
some practical issues regarding the computation of TFD’s.

II. FOUR SIGNAL TYPES

The characteristics of the four types of signals in the time
and frequency domains will determine the corresponding char-
acteristics of the TFD’s. Here, we discuss the characteristics
of the four types of TFD’s that lead to the corresponding
time–frequency surfaces in Fig. 1.

A type I signal will be continuous and aperiodic. The
Fourier transform of this signal will also be continuous
and aperiodic. We assume that both and are square
integrable and, thus, will be elements of IR . TFD’s for
this type of signal will have time and frequency variables that
are continuous and aperiodic, so a type I TFD will
be an element of IR . The time–frequency surface for a
type I TFD is a plane. The class of shift covariant TFD’s for
type I signals are covariant to shifts of the form
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(a) (b) (c)

Fig. 1. Time–frequency surfaces for type I, II, and IV TFD’s.

A type II signal will be discrete and aperiodic. The
discrete-time Fourier transform of this signal will be
continuous and periodic. We assume that is an element of

ZZ and that is an element of . TFD’s for
this type of signal will have a discrete, aperiodic time variable
and a continuous, periodic frequency variable; therefore, a type
II TFD will be a countably infinite collection of
elements of . Since the frequency variable of a type
II TFD is periodic, the time–frequency surface will be slices
of a cylinder. The class of shift covariant TFD’s for type II
signals will be covariant to shifts of the form

A type III signal is the dual of a type II signal, so a type III
TFD will be the dual of a type II TFD.

A type IV signal will be discrete and periodic with
period . The discrete Fourier transform will also be
discrete and periodic with period. We assume that both
and are elements of . TFD’s for this type of
signal will have time and frequency variables that are discrete
and periodic, so a type IV TFD will be a member
of . Since the time and frequency variables of a
type IV TFD are periodic, the time–frequency surface will be
points on a torus. The class of shift covariant TFD’s for type
IV signals will be covariant to shifts of the form

III. SHIFT-COVARIANT TFD’S

Here, we will repeat a derivation that shows that the Cohen
class (with kernels that are independent of the signal and also
independent of time and frequency) is the class of quadratic,
time and frequency shift-covariant TFD’s [3]–[5]. This concept
will be adapted to derive the discrete Cohen classes. The most
general form for a bilinear function of two type I signals
and is1

where is some quantity of interest. If we let ,
and let , then we have the most general quadratic

1Unless otherwise indicated, the range of sums and integrals will be
assumed to be�1 to1.

TFD of a type I signal .

(1)

For the signal , define a shifted version in time and
frequency as

If it is desired that the TFD be covariant to time and frequency
shifts, then it must be true that

Under the above constraint, (1) simplifies to the well-known
Cohen class of TFD’s. We present the Cohen class in four
different forms:

(2a)

(2b)

(2c)

(2d)

where the type I temporal local auto correlation function
(LACF) and the type I spectral LACF are defined as

and the kernel functions are related by

(3a)

(3b)

(3c)

The two forms in (2a) and (2c) arrive naturally from the
derivation and will allow simpler notation for the discrete
Cohen classes, as will be seen below. The two forms in (2b)
and (2d) are more commonly used and allow simpler notation
for several kernel constraints.
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It is interesting to compare (2a) with the equation for the
type I spectrogram

The only difference between the two equations is that the
outer product of the spectrogram window is replaced by the
kernel in the Cohen class. As a result, the Cohen class can be
considered to be a generalization of the spectrogram where a
two-dimensional (2-D) function of rank one (the outer product
of the spectrogram window) is replaced by a 2-D function
of arbitrary rank (the kernel). This form makes it clear that
the spectrogram is a member of the Cohen class and that,
under certain constraints, elements of the Cohen class can be
decomposed into weighted sums of spectrograms [31].

The cross terms in the Wigner distribution [32] satisfy the
following properties.

• Cross terms are centered exactly between two auto terms.
• If two auto terms are separated in frequency by ,

then the rate of oscillation of the cross term in the time
direction is .

• If two auto terms are separated in time by, then the rate
of oscillation of the cross term in the frequency direction
is .

If we constrain the kernel such that , then
the representation of the kernel in the ambiguity plane will
be real,2 and the cross terms of the corresponding TFD will
also have the properties indicated above. Other distributions
in the Cohen class, such as the Rihaczek distribution, whose
kernels do not satisfy the above constraint will not have the
above cross term properties.

TFD’s in the Cohen class are 2-D, continuous functions.
As a means for representing these functions, we can compute
samples of these 2-D functions such that the continuous
function could be recovered through sinc interpolation [23],
[24]. The method presented in [23] and [24] is unnecessarily
complicated, and a simpler method that uses an oversampled
signal is presented in [33]. Note that these methods only
provide accurate results when thekernel is bandlimited (and
thus can be sampled without aliasing) and has a closed form
in the time–frequency domain.

IV. THE TYPE II COHEN CLASS

The above proof for the type I Cohen class extends directly
to form the type II Cohen class, which is identical to the
class of AF-GDTFD’s [21]. The AF-GDTFD’s were known
to be covariant to time and frequency shifts, but it was not
known until this point that the AF-GDTFD’s include all type
II TFD’s that are covariant to time and frequency shifts. To
eliminate the clumsy acronym and to emphasize the analogy
with the original Cohen class, we will rename the class of
AF-GDTFD’s as the type II Cohen class. We will present the

2The kernel operates on the Wigner distribution as a linear, time-invariant
filter. The frequency response of this filter is the ambiguity plane representa-
tion of the kernel; therefore, if this representation is real, then the phase of
the filter is either 0 or�.

type II Cohen class in four different forms:

(4a)

ZZ

(4b)

(4c)

(4d)

where the type II temporal LACF and spectral LACF are
defined as

and the kernels are related to each other analogous to (3).
An unusual feature of and is that they are
only defined when ZZ, resulting in a hexagonal
sampling grid. The class of AF-GDTFD’s were originally
presented [21] in the form of (4b); however, this notation is
somewhat cumbersome due to the hexagonal sampling. The
forms in (4a) and (4c) arrive naturally from the derivation and
provide a more elegant notation.

The type II Cohen class can also be considered to be a
generalization of the type II spectrogram

This form makes it clear that the type II spectrogram is a
member of the type II Cohen class and that elements in the
type II Cohen class can be decomposed into a weighted sum
of type II spectrograms [34].

A. Distributions in the Type II Cohen Class

In Table II, we present the kernels of several time–frequency
distributions in the Cohen class. The kernels are formulated in
the time-lag plane since this form of the kernel is discrete in
both variables. Note that the kernels are defined on a hexagonal
sampling grid as indicated above.

The kernels corresponding to the spectrogram, Born-Jordan,
Rihaczek, Page, and Levin distributions are all direct dis-
cretizations of the corresponding kernels for the type I Cohen
class TFD’s [2], [3], [32]. The binomial kernel [35] satisfies
many desirable properties of TFD’s, and the recursive structure
also allows the implementation of fast algorithms. The type
II Cohen class also provide the framework for the discrete
formulation of the cone kernel [29]. These discrete TFD’s are
all computed from the Nyquist sampled signal, are covariant to
time shifts and circular frequency shifts, and satisfy many of
the properties of the corresponding type I Cohen class TFD’s,
e.g., marginals. For example, the type I and type II Rihaczek
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(a)

(b)

Fig. 2. Equivalent methods for computing TFD’s in the type II Cohen class. On the left is the LACF, in the middle is the kernel, and on the right is the
generalized LACF. Open circles represent zero values, and filled circles represent actual or interpolated values.

TABLE II
SOME KERNELS FOR THETYPE II COHEN CLASS

distributions can be expressed as

A prominent distribution that is missing from the list
in Table II is a type II Wigner distribution. Discretization
methods [15]–[17], [28] have failed to produce a satisfactory
type II Wigner distribution since they require the signal to
be oversampled by a factor of two. In [36] and [37], we
present an alternative definition of the type I (classical) Wigner
distribution that generalizes straightforwardly to all four signal
types. Under this definition, we have shown that the type II
Wigner distribution does not exist. For this reason, the type II

quasi-Wigner distribution was created [21]. The type II quasi-
Wigner distribution provides very little smoothing, so it is, in
a sense, “close” to a Wigner distribution.3 The type II quasi-
Wigner distribution will be useful for illustrating the properties
of the type II Cohen class.

The Claasen–Mecklenbräuker (CM) distribution is equiv-
alent to their discrete implementation of the type I Wigner
distribution [17]. The CM distribution is related to a scaled
and sampled version of the type I Wigner distribution when
the signal is oversampled by a factor of two. However, since
the CM distribution requires the signal to be oversampled by
two, it should not be considered a type II Wigner distribution.

B. Relationship with the Classical Wigner Distribution

Although the type II Cohen class is equivalent to the class
of AF-GDTFD’s, the properties of the type II Cohen class
are not well understood. In particular, TFD’s in the type II
Cohen class appear to have more terms in the time–frequency
plane than TFD’s in the type I Cohen class. It is unclear what
these components represent, and authors have attributed them
as due to aliasing [18], [22]. In this section, we will present a
means for computing type II TFD’s from the type I (classical)
Wigner distribution as a means for explaining the properties
of the type II Cohen class.

The procedure for computing a TFD in the type II Cohen
class is represented pictorially in Fig. 2(a). On the left is the

3In [21], this distribution was called, without justification, a discrete Wigner
distribution. We have chosen to call it a quasi-Wigner distribution because it
is “close”, but it is not the real thing.



O’NEILL AND WILLIAMS: SHIFT COVARIANT TIME–FREQUENCY DISTRIBUTIONS OF DISCRETE SIGNALS 137

(a) (b) (c)

Fig. 3. Pictorial representation of the cross terms in the type I, II, and IV Cohen classes. Open circles represent auto terms, and filled circles represent
cross terms. The dashed lines show how the cross terms are between the auto terms.

hexagonally sampled LACF, in the middle is the hexagonally
sampled kernel, and on the right is the generalized LACF.
To compute the TFD, we would perform discrete-time Fourier
transforms on the lag variable of the generalized LACF. In
Fig. 2(b), we present an alternative method for computing
TFD’s in the type II Cohen class by means of the classical
Wigner distribution. To do this, we double the number of
points in the LACF with sinc interpolation and double the
number points in the kernel by inserting zeros. If we denote
the modified LACF as and the modified kernel by

, then it is straightforward to see that we are computing
the exact same distribution

ZZ
ZZ

However, if we reverse the order of the summations, then we
can express TFD’s in the type II Cohen class in terms of a
time-sampled, type I Wigner distribution4

ZZ

where

and represents a time-sampled, type I Wigner dis-
tribution. For more details, see [33].

Three examples of modified kernels in the time–frequency
plane are shown in Fig. 4. The first corresponds to
the type II binomial distribution, the second corresponds to the
type II quasi-Wigner distribution, and the third corresponds to
a type II spectrogram with a Hanning window. Note that since
all three kernels satisfy analogous to
the restriction above for the type I Cohen class, the phase of
these filters is 0 or .

Each kernel contains two distinct parts. The smooth part of
each kernel is what we would expect and will be called the
lowpass part of the kernel. The oscillating part is centered at

4
�n denotes a convolution in the variablen, and
�

!
denotes a circular

convolution in the variable!.

TABLE III
AUTO TERMS AND CROSS TERMS IN A TYPE

II TFD OF A TWO COMPONENT SIGNAL

a frequency of rad and will be called the highpass part of
the kernel. TFD’s in the type II Cohen class are computed
by performing a 2-D convolution of with .
The lowpass part of each kernel will perform as expected by
capturing elements of the Wigner distribution that are slowly
varying. The highpass part of the kernel will capture elements
of the Wigner distribution that are quickly varying and displace
them in frequency by rad. The highpass part of the kernel is
an unexpected, but integral, part of the type II Cohen class. The
highpass part of the kernel cannot be eliminated and is what
makes the properties of the type II Cohen class different from
the properties of type I Cohen class. In fact, the highpass part
of the kernel is necessary if the TFD is to satisfy the frequency
shift covariance property [33].

As a means for illustrating the properties of the type II
Cohen class, we will now apply the above to a fictional,
two-component signal with the first component centered at

and the second component centered at . The
Wigner distribution of this signal is represented pictorially
in Fig. 3(a), where the open circles represent the two auto
terms, and the filled circle represents the cross term. Since
there are two parts to the modified kernel, the type II TFD
will have six terms rather than three. These six terms are
are represented pictorially in Fig. 3(b) and are listed in Table
III, where and represent, respectively, the
lowpass and highpass parts of the modified kernel. The first
two terms represent the signal components and will be called
auto terms. The last four terms are centered between the two
auto terms on the cylinder and will be called cross terms.
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(a) (b)

(c)

Fig. 4. Three modified kernels for the type II Cohen class in the time–frequency plane.

Cross term four [cf., Fig. 3(b)] lies between auto term one
and the periodic repetition of itself. This cross term arrives
from filtering autoterm one with the highpass part of the
kernel. Thus, like the auto term one, cross term four does
not oscillate. However, since cross term four is being filtered
by the highpass part of the kernel, it is attenuatedas if it were
oscillating in time at a rate of rad and being attenuated by
the lowpass part of the kernel. This equivalence is a result of
the fact that the lowpass and highpass parts of the kernel are
related by a simple modulation. By removing the modulation
from the highpass part of the kernel and transferring it to the
nonoscillating auto term, we can see that this is equivalent to
lowpass filtering a highly oscillatory term. Cross term five is
analogous to cross term four.

Cross terms three and six arise from filtering the cross
term in the Wigner distribution, are centered on the cylinder
between the two auto terms, and will have the same frequency
of oscillation. However, since cross term three is being filtered
by the lowpass part of the kernel and cross term six is being
filtered by the highpass part of the kernel, the cross terms will
not be attenuated by the same amount.5 Even though the two
terms have the same rate of oscillation in the time direction,
the term that is closest to the auto terms will be attenuated the
most. This is discussed in much greater detail in [33].

5Unless the two auto terms are separated by� rad in frequency. In this
case, the two auto terms will be attenuated by exactly the same amount.

In general, the cross terms in the type II Cohen class satisfy
the following properties, which are analogous to the cross term
properties of the type I Cohen class.6

• Cross terms are centered exactly between two auto terms,
where “between” is applied on the surface of the cylinder.

• If two auto terms are separated in time by, then the rate
of oscillation of the cross term in the frequency direction
will be .

• If two auto terms are separated in frequency by,
then the rate of oscillation of the cross term in the time
direction will be .

• The ability of the kernel to attenuate the cross term is
directly related to the distance between the cross term
and the corresponding auto terms (regardless of the rate
of oscillation of the cross term).

C. Examples

For the first example, we use sinusoids of three different
frequencies. The binomial distributions of these sinusoids are
shown in Fig. 5(a)–(c). For the low-frequency sinusoid, the
Wigner distribution will have two auto terms and a slowly
varying cross term between them. Since the three components
in the Wigner distribution are all slowly varying, the three

6Subject to the kernel constraint mentioned above.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Examples illustrating the properties of the type II Cohen class.

components are all captured by the lowpass part of the kernel
and ignored by the highpass part of the kernel.

For the middle frequency sinusoid, the Wigner distribution
will have two auto terms and a medium varying cross term.
The auto terms are slowly varying and again captured by the
lowpass part of the kernel. The cross term is varying too
quickly for the lowpass part of the kernel and too slowly

for the highpass part of the kernel and is thus captured
by neither. Again, the highpass part of the kernel has no
effect.

For the high-frequency sinusoid, the Wigner distribution
will have two auto terms and a quickly varying cross term.
As before, the auto terms are captured by the lowpass part of
the kernel. However, now, the cross term is varying quickly
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enough to be picked up by the highpass part of the kernel and,
thus, appears at a frequency ofrad.

For the second example, we will compute the quasi-Wigner
distribution and binomial distribution of two parallel chirps.
These TFD’s are shown in Fig. 5(d) and (e). The quasi-
Wigner kernel performs very little smoothing on the Wigner
distribution. As a result, all the components of the Wigner
distribution are captured by both parts of the quasi-Wigner
kernel, and the resulting distribution has six components.
Since the binomial kernel provides more smoothing than the
quasi-Wigner kernel, the highpass part of the binomial kernel
will have very little effect, and the binomial distribution
appears to be very similar to TFD’s in the type I Cohen
class.

Since the type II spectrogram is a member of the type
II Cohen class, the spectrogram kernel will also contain
lowpass and a highpass parts. The type II spectrogram of
a high-frequency sinusoid is computed using a rectangular
window of length 19 and shown in Fig. 5(f). The type I
spectrogram of this signal would contain two auto terms
and a greatly attenuated, quickly varying cross term at a
frequency of 0 rad. The highpass part of the kernel captures
this cross term and creates the component at a frequency
of rad in the type II spectrogram. Due to the extreme
smoothing nature of the type II spectrogram, it is difficult
to find an example where all six components would be
visible.

D. Additional Properties

When the class of AF-GDTFD’s was originally presented by
Jeong and Williams [21], they also derived kernel constraints
for the distributions to satisfy many desirable properties:
realness, positivity, time shift covariance, frequency shift
covariance, time marginals, frequency marginals, finite time
support, finite frequency support, instantaneous frequency, and
group delay. However, in [21], the kernel constraints for the
group delay, instantaneous frequency, and finite frequency
support properties are incorrect. We have investigated
this in greater detail and provided corrections in [33],
but this must be omitted here due to space limitations.
Here, we will briefly investigate the kernel constraints
for the finite frequency support property and the Moyal
formula.

For the type I Cohen class, a TFD is said to satisfy the
finite frequency support property if for
implies that for . However, since the
frequency variable of a type II Cohen class TFD is periodic,
the finite frequency support property is not well defined. A type
I TFD is said to satisfy the strong frequency support property
[38] if for any implies that .
This property can be satisfied, and an example of a type II
TFD that satisfies this is the type II Rihaczek distribution that
has been defined above.

The validity of the Moyal formula [3], [39] is useful
in several applications, including signal synthesis [40] and
detection/estimation problems [41]. Given two type II signals

and , the Moyal formula can be formulated for type

II signals as7

TFD’s in the type II Cohen class will satisfy the Moyal formula
under

(5)

The proof is straightforward and is presented in [33]. Examples
of TFD’s that satisfy this constraint are the type II Rihaczek,
Page, and Levin distributions.

E. Aliasing

The above analysis provides an explicit mechanism for
understanding the properties of distributions in the type II
Cohen class. The analysis clearly shows that distributions in
the type II Cohen class will have more terms than distributions
in the type I Cohen class. Aliasing occurs when a continuous
function is sampled at a rate that is lower than the Nyquist
rate. Since the operation of computing a type II Cohen class
TFD is defined explicitly for type II (discrete time) signals, it
is not clear how to define “aliasing” in this context. However,
the following properties of TFD’s in the type II Cohen class
are contrary to the notion of “aliasing,” and thus, we have
chosen to designate the extra terms as cross terms.

• There exist distributions that satisfy the Moyal formula
(and thus can reconstruct the signal to within a constant
phase [33], [42]).

• The extra terms do not prevent the time and frequency
marginals from being satisfied.

• The extra terms always exist, even when the signal is
severely oversampled.

• The extra terms behave like cross terms with regard to
their location and attenuation.

• The extra terms are necessary for the distribution to be
covariant to circular frequency shifts.

• The type II spectrogram also contains these extra terms,
although they are usually not apparent.

V. THE TYPE III COHEN CLASS

The type III Cohen class is useful in applications such as in
the analysis of scattering [43], [44], where complex frequency
data is being collected and it is desired to compute TFD’s of
this data. However, since the type III Cohen class is the exact
dual of the type II Cohen class, there is no need to investigate
this class any further.

VI. THE TYPE IV COHEN CLASS

There has been relatively little work investigating TFD’s
for type IV signals. Richmanet al. [9] have investigated a
type IV Wigner distribution using group theory. In addition,
Narayananet al. [7], [8] have investigated TFD’s for type IV

7The Moyal formula can be written in a more general form that involves
cross TFD’s of two signals. The result given below also holds for the more
general case; however, we do not wish to introduce type II cross TFD’s at
this point.
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(a)

(b)

Fig. 6. Equivalent methods for computing the type IV Cohen class. On the left is the LACF, in the middle is the kernel, and on the right is the generalized
LACF. The dashed lines delineate the period of each of the functions.

signals using operator theory. By extending the above proof
for the type I Cohen class, we immediately generate a closed
form for the entire class of quadratic, shift-covariant TFD’s
for type IV signals

(6a)

ZZ

(6b)

(6c)

ZZ

(6d)

where the type IV temporal LACF and spectral LACF are
defined as

and the kernels are related to each other analogous to (3). The
functions and are all
sampled on hexagonal grids and are periodic in the hexagonal
sense. Examples of and are given in Fig. 6
for a signal of length 4.

Since the distributions produced by Richmanet al.are shift-
covariant and quadratic, they will be members of this class.
The method of Narayananet al. is promising but has yet to
produce a closed form for the entire class. Our method is more
complete than the previous two works in that we generate the
entire class, and the mathematics behind our derivation are
more straightforward.

The type IV Cohen class can also be considered to be a
generalization of the type IV spectrogram

From this, it is clear that the type IV spectrogram is a member
of the type IV Cohen class and that TFD’s in the type IV
Cohen class can be decomposed into a weighted sum of type
IV spectrograms.

A. Distributions in the Type IV Cohen Class

To convert distributions from the type I Cohen class to
the type II Cohen class, we simply sampled the correspond-
ing kernels. To convert distributions to the type IV Cohen
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TABLE IV
SOME KERNELS FOR THETYPE IV COHEN CLASS

class, we must also account for the periodic nature of the
distributions. The generalization of the spectrogram and the
Rihaczek distribution to type IV signals is straightforward, and
the corresponding kernels are listed in Table IV. For example,
the type IV Rihaczek distribution can be expressed as

We have also generalized the binomial distribution to the type
IV Cohen class, but we have not included the kernel in Table
IV since it has a complicated form.

As mentioned above, in [36] and [37], we presented an
alternative definition of the classical Wigner distribution that
extends easily to the three types of discrete signals. Surpris-
ingly, under this definition, the type IV Wigner distribution
exists only for signals with an odd length period. The kernel
of this distribution is listed in Table IV and is identical the
definition proposed by Richmanet al. [9]. For signals with
an even length period, we have constructed a type IV quasi-
Wigner distribution that performs very little smoothing and
has similar characteristics to the type IV Wigner distribution.8

This kernel is also listed in Table IV.9

B. Relationship with the Classical Wigner Distribution

In order to understand the properties of the type IV Cohen
class, we will use a method similar to the method used for
the type II Cohen class. In Fig. 6(a), we have an example of
how to compute a TFD in the type IV Cohen class for a four
point signal. The LACF and the kernel will be sampled on
hexagonal grids and will also be periodic in the hexagonal
sense. However, the convolution of the LACF with the kernel,
which is called the generalized LACF, will be sampled on a
rectangular grid and will also be periodic in the rectangular
sense. For an -point signal, this generalized LACF will
have -by- points. To compute the type IV TFD, we must
perform a discrete Fourier transform in the lag variable.

In Fig. 6(b), we present an alternative method for computing
TFD’s in the type IV Cohen class by means of a sampled
version of the classical Wigner distribution. For the first
step, we will double the number of points in the LACF by
performing a 2-D sinc interpolation. We will also double the

8The type IV Wigner distribution proposed by Richmanet al. for signals
with an even length uses a different group structure than their odd length
distribution and has strikingly different properties. For these reasons, it does
not seem appropriate to designate their even length distribution as a “Wigner
distribution.”

9This definition arose from working backward from the modified kernels,
which will be described below.

number of points in the kernel by inserting zeros between all
the points. The modified LACF and kernel are sampled on
rectangular grids and will also be periodic in the rectangular
sense. For the second step, we extract a portion of-by-
points that is exactly one period of the modified functions in
the rectangular sense. This is shown pictorially in Fig. 6(b). If
we denote the modified LACF as and the modified
kernel as , then the modified method pictured in
Fig. 6(b) can be represented as

(7)

By applying Fourier transform properties, it can be shown that

where10

and represents samples of the classical Wigner
distribution in time and frequency. For more details, see [33].

Three examples of modified kernels in the time–frequency
plane are shown in Fig. 7. The first corresponds to the
type IV binomial distribution, the second corresponds to the
type IV quasi-Wigner distribution, and the third corresponds
to a type IV spectrogram with a Hanning window. As above,
all kernels satisfy .

Each of the kernels has four distinct parts. The first behaves
as a lowpass filter both in the time and frequency directions
and is similar to the kernel in the type I Cohen class. The
second behaves as a lowpass filter in the frequency direction
and a highpass filter in the time direction and is similar to
the highpass part of a type II Cohen class kernel. The third
component behaves like a lowpass filter in the time direction
and a highpass filter in the frequency direction, and the fourth
component behaves like a highpass filter in both the time and
frequency directions.

We will now apply the above to a fictional, single-
component signal with period centered on the
time–frequency torus at . Because of the four
parts of the kernel, there will be three other terms centered at

, , and .
Similar to the type II Cohen class, we will choose to designate
these terms as cross terms between the component and the
periodic repetitions of itself.

For a two-component signal, the situation is a little
more complicated. Add a second component centered at

. There will be three cross terms between the
second component and the periodic repetitions of itself.
There will also be four more cross terms occurring between
the two components on the torus. These will be centered
at

. There will be a total of 10 cross terms
10Note carefully the sampling forn andm in Fig. 6.
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(a) (b)

(c)

Fig. 7. Three modified kernels for the type IV Cohen class in the time-frequency plane.

for a two-component signal. The configuration of the auto
terms and cross terms for a two component signal is depicted
in Fig. 3(c). Note that all of these cross terms are necessary
for a type IV TFD to satisfy the time and frequency shift
covariance properties [33]. We will not develop the rate
of oscillation of the cross terms in the time and frequency
directions and the attenuation properties since they are a
direct extension of the type II Cohen class outlined above.

In general, the cross terms in the type IV Cohen class satisfy
the following properties, which are analogous to the properties
of the type I Cohen class.11

• Cross terms are centered exactly between two auto terms,
where between is applied on the surface of the torus.

• If two auto terms are separated in time by, then the rate
of oscillation of the cross term in the frequency direction
will be .

• If two auto terms are separated in frequency by,
then the rate of oscillation of the cross term in the time
direction will be .

• The ability of the kernel to attenuate the cross term is
directly related to the distance between the cross term

11Subject to the kernel constraint mentioned above.

and the corresponding auto terms (regardless of the rate
of oscillation of the cross term).

C. Kernel Constraints and Distribution Properties

Here, we will present sufficient kernel constraints for TFD’s
in the type IV Cohen class to satisfy several desirable prop-
erties. In all cases, the proofs are simple extensions of those
for the type I and type II Cohen classes and will be omitted.
The properties and the corresponding kernel constraints are
listed in Table V. The properties of finite time support and
finite frequency support are not well defined since type IV
TFD’s are periodic in both time and frequency; however, the
strong time support and strong frequency support properties
can be satisfied. An example of a TFD that satisfies the
Moyal formula, the strong time support property, and the
strong frequency support property is the type IV Rihaczek
distribution.

For the instantaneous frequency property, we assumed a
signal of the form , and for the group delay
property, we assumed a signal of the form .
Other alternatives for the instantaneous frequency and group
delay properties could have been considered, as was done for
the type II Cohen class in [33].
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(a)

(b)

(c)

Fig. 8. Examples of TFD’s in the type IV Cohen class. On the left is a single Gabor logon, in the middle is a signal with a sinusoidal instantaneous
frequency, and on the right is an aperiodic sinusoid.

D. Examples

We now prevent several examples to illustrate the properties
of the type IV Cohen class. We will use three of the type IV
distributions mentioned above. The first is a type IV spectro-
gram with a Hanning window. Like the type I spectrogram,
this distribution eliminates cross terms very well but also
suffers from poor resolution. The second is the quasi-Wigner
distribution, which provides very little smoothing and is useful
for displaying the properties of the cross terms in the type IV
Cohen class. The third is the type IV binomial distribution,
which provides for a tradeoff between the first two in terms of
maintaining resolution and suppressing cross terms. In Fig. 8,
we present type IV TFD’s corresponding to these kernels for
three different test signals.

The first signal is a Gabor logon and is defined as

The quasi-Wigner distribution clearly shows the cross terms
as predicted above. The cross term in the upper-right corner
has a negative amplitude and cancels out the other cross terms
in the marginal calculations. The spectrogram and binomial
TFD attenuate the cross terms and provide some smoothing
of the auto term.

The second signal has a sinusoidal IF and is defined as

Notice that none of the TFD’s show edge effects that would
be apparent in a type II TFD. The three TFD’s illustrate the
tradeoff between resolution and cross term suppression.

The third signal is an aperiodic sinusoid

By aperiodic, we mean that since 3 is not a divisor of 128, the
signal is not continuous at the period boundary. The magnitude
of the DFT of this signal contains “leakage,” and this also
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TABLE V
KERNEL CONSTRAINTS FOR THETYPE IV COHEN CLASS

occurs in the type IV TFD’s. All three of the TFD’s show
a discontinuity at the period edge. The quasi-Wigner shows
some energy at a frequencies of and rad that is
a result of the discontinuity but does not have an obvious
interpretation.

VII. PRACTICAL ISSUES

Given that the type I Cohen class has fewer cross terms than
the discrete Cohen classes, we might wonder why the discrete
Cohen classes are necessary. Here, we give three advantages
of the discrete Cohen classes over the original Cohen class
and present a comparison with another discrete class.

First, to compute distributions in the type I Cohen class,
we must use a signal that is oversampled by a factor of two,
which increases by a factor of four the required computations.
Second, even with oversampling, distributions in the type I
Cohen class are not always straightforward to compute. For
example, the Chöı–Williams distribution [45] is often cited in
the literature, but the kernel is not bandlimited and does not
have compact support. As a result, it is not clear how to sample
the kernel and, thus, provide an accurate implementation of
this distribution. Third, the discrete Cohen classes provide
the framework for relating discrete TFD’s to other discrete-
time processing such as linear, time-varying filtering [46], and
signal detection [41].

Boashash [13] has created a class of discrete TFD’s for
type II signals called the generalized discrete time–frequency
distributions (GDTFD’s). While the implementation of this
method is slightly simpler conceptually since all functions are
defined on rectangular grids, there are many disadvantages to
this method. The GDTFD’s have the following disadvantages.

• They do not compute samples of the type I Cohen class.
• They are covariant to neither linear nor circular frequency

shifts.
• They do not include any type of spectrogram.
• They require an oversampled signal and are thus more

expensive computationally.

The GDTFD’s and their relationships with the type I and type
II Cohen classes are examined in much greater detail in [33].
Given the above, the Cohen classes seem preferable to the
GDTFD’s.

VIII. C ONCLUSION

The most well known and most often used TFD’s are
those in the Cohen class. The Cohen class is often called
the shift-covariant class because it can be shown to include
every quadratic TFD that is covariant to time shifts and
frequency shifts. In this paper, we have used the axioms of
shift covariance to extend the original Cohen class to the three
types of discrete signals in Table I. The extension is relatively
simple and immediately generates a closed form for the entire
class.

Having a closed form for the classes does not immediately
provide an understanding of the properties of the classes. To
this end, we have provided an explicit relationship between the
classical Wigner distribution (whose properties are very well
known) and the discrete Cohen classes. With this relationship,
it is straightforward to see that the properties of the discrete
Cohen classes, while different from the original Cohen class,
are a direct consequence of the periodicities of the discrete
signals.

All TFD’s mentioned in this paper can be computed from
a MATLAB software package that is freely available at
http://mdsp.bu.edu/jeffo.
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