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Shift Covariant Time—Frequency
Distributions of Discrete Signals

Jeffrey C. O’'Neill, Member, IEEE and William J. Williams,Senior Member, IEEE

Abstract—Many commonly used time—frequency distributions TABLE |
are members of the Cohen class. This class is defined for continu- DEFINITIONS OF THE FOUR TYPES OF SIGNALS
ous signals, and since time—frequency distributions in the Cohen
class are quadratic, the formulation for discrete signals is not
straightforward. The Cohen class can be derived as the class of ty
all quadratic time—frequency distributions that are covariant to ~ t¥pe I a il A .
time shifts and frequency shifts. In this paper, we extend this type Il | continuous and periodic | Fourier series
method to three types of discrete signals to derive what we will type IV | discrete and periodic discrete Fourier transform
call the discrete Cohen classes. The properties of the discrete
Cohen classes differ from those of the original Cohen class. To . L
illustrate these properties, we also provide explicit relationships theory [9]. There has also been much other work investigating
between the classical Wigner distribution and the discrete Cohen methods for computing TFD’s from sampled signals [10]-[30].

classes. The results presented here are more complete than the above
results in that we give a closed form for the complete class of
I. INTRODUCTION shift-covariant TFD’s for signals of types Il, lll, and IV. Since
. . the class of AF-GDTFD'’s introduced by Jeong and Williams
N SIGNAL analysis, there are four types of signals coM; guadratic and shift-covariant, it is clearly a subset of the
monly used. These four types are based on whether ype Il Cohen class; however, nothing more can be said at this

Sign‘?" i_s contin_uogs or discreFe and whether_ the_signal int. The type IV Wigner distribution produced by Richman
aperiodic or periodic. The four signal types are listed in Tabl e& al. [9] and the distributions produced by Narayaretrel.
along with their properties in the time domain. For each of t é{

Type Time Domain Properties | Spectrum

pel continuous and aperiodic | Fourier transform
discrete and aperiodic discrete-time Fourier transform

four t f sianals. there i iate Fourier t f are members of the type IV Cohen class, but they have not
ourtypes of signas, tere 1S an appropriateé Founer ranstoifil, o ateq a class of type IV distributions.
pair, so it seems plausible that there should exist four types™o

. R ; his paper is organized as follows. Section Il presents some
time-frequency distributions (TFD’s). The Cohen class [1], [ asic characteristics of TFD’s for each of the four signal types.

(with the restriction that the kernel is not a function of time an ction 11l repeats a derivation of the type | Cohen class as the
fre.quen_cy and is also not a function of thg signal) can deriv fgss of time and frequency shift covariant, quadratic TFD’s.
axlomatlcally as the c.Iass of gll quaFirat|c TFD's for type. his derivation will be extended to derive the other three

sggne;ls lthe':th_are covariant t'cl)l time f.h'ﬁts ?Qd freq(;Jer;_cy t_Sh'ESohen classes. Sections 1V-VI will present results concerning
[31{5]. In this paper, we will investigate the quadratic, 'Mehe three discrete Cohen classes, and Section VII will present

and frequency S.h'ft covarlant_c_lasses of T'_:D,S for the Oth%me practical issues regarding the computation of TFD’s.
three types of signals. The original class will be renamed the

type | Cohen class, and the other three classes will be denoted
the type Il, Ill, and IV Cohen classes.

There are three common methods for deriving TFD's for The characteristics of the four types of signals in the time
type | signals. The first uses operator theory [1], [2], the secoA@d frequency domains will determine the corresponding char-
uses group theory [6], and the third uses covariance properieristics of the TFD’s. Here, we discuss the characteristics
[3]-[5]. In this paper, we choose to use the covariance-bas@idthe four types of TFD’s that lead to the corresponding
approach to investigate TFD's for signals of types II, Ill, anéime—frequency surfaces in Fig. 1.

IV because of the simplicity and directness of the mathematics A type | signalz(¢) will be continuous and aperiodic. The
Narayananet al. [7], [8] have investigated the formulationFourier transform of this signaX (w) will also be continuous
of a type IV TFD's using operator theory. Richman al. and aperiodic. We assume that beftt) and X (w) are square
have investigated type IV Wigner distributions using grouftegrable and, thus, will be elements b§(IR). TFD's for
this type of signal will have time and frequency variables that
Manuscript received March 7, 1997; revised April 27, 1998. The associgige continuous and aperiodic, so a type | TE[D(t, w) will
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Fig. 1. Time-frequency surfaces for type I, Il, and IV TFD’s.

A type Il signalz(n) will be discrete and aperiodic. TheTFD of a type | signalz(t).
discrete-time Fourier transform of this sign&l(w) will be
continuous and periodic. We assume that) is an element of T,(t,w) = //k(t,w;tl,tQ)a:(tl)az*(tQ) dt; dto. (1)
£,(Z) and thatX (w) is an element of.([0, 27)). TFD’s for
this type of signal will have a discrete, aperiodic time variableor the signalz(t), define a shifted version in time and
and a continuous, periodic frequency variable; therefore, a tyfpequency as
Il TFD C(n,w) will be a countably infinite collection of
elements ofL»([0, 27)). Since the frequency variable of a type
Il TFD is periodic, the time—frequency surface will be slice§ it i gesired that the TFD be covariant to time and frequency
of a cylinder. The class of shift covariant TFD’s for type ”shifts, then it must be true that
signals will be covariant to shifts of the form

#(t) = (T}, FL 2)(0)

T:(t,w) = Tp(t — to,w — wo).

(T5, %) (n) = 2(n = no)
(FII x) (n) = z(n)e*on Under the above constraint, (1) simplifies to the well-known

Cohen class of TFD’s. We present the Cohen class in four

A type Ill signal is the dual of a type Il signal, so a type liidifferent forms:
TFD will be the dual of a type Il TFD. I _ " —je(ti—ts)
A type IV signal z(n) will be discrete and periodic with Colt,w) = //%(tl)jj (t2)i(t1 — 2,12 — t)e dty dt>

period N. The discrete Fourier transfortt (%) will also be (2a)
discrete and periodic with periodl. We assume that boti(n) _ ot gt

and X (k) are elements of»([1, N]). TFD’s for this type of = //Rw(t yT)P(t — T, 7)e dt’ dr (2b)
signal will have time and frequency variables that are discrete 1

and periodic, so a type IV TF@LY(n, k) will be a member = %//X(WI)X*(WQ)\I/(WI —w,w2 — w)

of £([1, N]?). Since the time and frequency variables of a o —w
type IV TFD are periodic, the time—frequency surface will be X 7 duy duoy (2¢)
points on a torus. The class of shift covariant TFD’s for type = i//R}((e,w’)q)(e,w — w’)eﬁe do’ do (2d)

IV signals will be covariant to shifts of the form 2

where the type | temporal local auto correlation function
(LACF) RL and the type | spectral LACRY; are defined as

RL(¢ = (t+ —T) *(t— —T)
m( ,7‘) x 2 x 2
Ill. SHIFT-COVARIANT TFD’s

R (8,w) = X<w + —)X* <w - Q)

Here, we will repeat a derivation that shows that the Cohen 2 2
class (with kernels that are independent of the signal and al§gy the kernel functions are related by
independent of time and frequency) is the class of quadratic,
time and frequency shift-covariant TFD’s [3]—[5]. This concept Gt ts) = ¢<—t1 —t2 - t2> (3a)
will be adapted to derive the discrete Cohen classes. The most 2
general form for a bilinear function of two type | signal§)
and y(t) ist

(80 = [[ st ) s #0.0) = [f ey dvar @

) , . The two forms in (2a) and (2c) arrive naturally from the
whereA is some quantity of interest. If we lel(t) = y(f), gerivation and will allow simpler notation for the discrete
and letA = [t,w], then we have the most general quadratigspen classes, as will be seen below. The two forms in (2b)

lUnless otherwise indicated, the range of sums and integrals will @c@d (2d) are more Commohly used and allow simpler notation
assumed to be-co to co. for several kernel constraints.

(T?Oa:) (n) = z(n — ng)

(FE).’I) (n) = a:(n)ejQW"kO/N.

1 . )
\I/(wl,wQ) = %/ Z/)(tl,tg)ejwltle_]thQ dt1dt2 (3b)
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It is interesting to compare (2a) with the equation for thigype Il Cohen class in four different forms:

type | spectrogram CH(n w)
S (t,w) = Z Zx(nl)x*(”2)¢(”1 —n,ny —n)e I mTE)

N // w(t)z" (t2)h(tr — )R" (82 — t)e ™7 712) ity diy. S (4a)

_ I/, 7 o —jwem

The only difference between the two equations is that the — Z:nz By (n',m) ¢(n —n',m)e (4b)
outer product of the spectrogram window is replaced by the — {V*%miez
kernel in the Cohen class. As a result, the Cohen class can be vy
considered to be a generalization of the spectrogram where a= 5 //X(wl)X*(wQ)\If(wl —w,wr —w)
two-dimensional (2-D) function of rank one (the outer product 0
of the_ spectrogram window) is r_eplaced by a 2_—D function NEELICEE A (4c)
of arbitrary rank (the kernel). This form makes it clear that 1 - ) e
the spectrogram is a member of the Cohen class and that, = 5 - // Ry (0,0)®(0,w —w)e!™ du' df (4d)
under certain constraints, elements of the Cohen class can be 0<wi 8 <om

decomposed into weighted sums of spectrograms [31]. here the type Il temporal LACF and spectral LACF are
The cross terms in the Wigner distribution [32] satisfy th\évefined as yp P P

following properties.

RYn,m) = a:(n + T)aﬁ* (n - T)

« Cross terms are centered exactly between two auto terms. @\ 2 2

e If two auto terms are separated in frequency Ay, - AN ]
then the rate of oscillation of the cross term in the time Ry (0,w) = X{w+ R G

direction is A, o and the kernels are related to each other analogous to (3).
* Iftwo auto terms are separated in timedyy, thenthe rate o, unusual feature oR(n,m) andé(n,m) is that they are
of oscillation of the cross term in the frequency directio : o RO
s A Bnly d.efmed.wher{ni 5, m} € Z, resultln,g ina hexgg_onal
t sampling grid. The class of AF-GDTFD’s were originally
If we constrain the kernel such tha{t, 7) = ¢*(—t,7), then presented [21] in the form of (4b); however, this notation is
the representation of the kernel in the ambiguity plane Wdlomewhat cumbersome due to the hexagonal sampling. The

be reaf and the cross terms of the corresponding TFD Witbrms in (4a) and (4c) arrive naturally from the derivation and
also have the properties indicated above. Other distributiofigvide a more elegant notation.

in the Cohen class, such as the Rihaczek distribution, whoserhe type 1l Cohen class can also be considered to be a
kernels do not satisfy the above constraint will not have thgneralization of the type Il spectrogram
above cross term properties. ST (n,w)

TFD’s in the Cohen class are 2-D, continuous functions.® ‘"’ '
As a means for representing these functions, we can compute= Z Zx(m)x*(ng)h(m — n)h*(ng — n)eIlmne),
samples of these 2-D functions such that the continuous 71 n
function could be recovered through sinc interpolation [23This form makes it clear that the type Il spectrogram is a
[24]. The method presented in [23] and [24] is unnecessaritfyember of the type Il Cohen class and that elements in the
complicated, and a simpler method that uses an oversamgigee Il Cohen class can be decomposed into a weighted sum
signal is presented in [33]. Note that these methods or§ type Il spectrograms [34].
provide accurate results when tkernelis bandlimited (and o .
thus can be sampled without aliasing) and has a closed foﬁnD'St”bUt'ons in the Type Il Cohen Class
in the time—frequency domain. In Table Il, we present the kernels of several time—frequency
distributions in the Cohen class. The kernels are formulated in
the time-lag plane since this form of the kernel is discrete in
both variables. Note that the kernels are defined on a hexagonal
The above proof for the type | Cohen class extends direc%mp”ng grid as indicated above.

to form the type Il Cohen class, which is identical to the The kernels corresponding to the spectrogram, Born-Jordan,
class of AF-GDTFD’s [21]. The AF-GDTFD’s were knownRihaczek, Page, and Levin distributions are all direct dis-
to be covariant to time and frequency shifts, but it was netetizations of the corresponding kernels for the type | Cohen
known until this point that the AF-GDTFD's include all typeclass TFD's [2], [3], [32]. The binomial kernel [35] satisfies
Il TFD's that are covariant to time and frequency shifts. Tenany desirable properties of TFD’s, and the recursive structure
eliminate the clumsy acronym and to emphasize the analogigo allows the implementation of fast algorithms. The type
with the original Cohen class, we will rename the class &f Cohen class also provide the framework for the discrete
AF-GDTFD's as the type Il Cohen class. We will present thiermulation of the cone kernel [29]. These discrete TFD's are
all computed from the Nyquist sampled signal, are covariant to

2The kernel operates on the Wigner distribution as a linear, time-invari ; ; ; ;
filter. The frequency response of this filter is the ambiguity plane represen Iine shifts and circular frequency shifts, and satisfy many of

tion of the kernel; therefore, if this representation is real, then the phase E‘ﬁ' properf[ies of the corresponding type | Cohen class TFD's,
the filter is either O orr. e.g., marginals. For example, the type | and type Il Rihaczek

IV. THE TYPE Il COHEN CLASS
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Fig. 2. Equivalent methods for computing TFD’s in the type Il Cohen class. On the left is the LACF, in the middle is the kernel, and on the right is the
generalized LACF. Open circles represent zero values, and filled circles represent actual or interpolated values.

TABLE 1

SoME KERNELS FOR THETYPE Il COHEN CLASS

quasi-Wigner distribution was created [21]. The type Il quasi-
Wigner distribution provides very little smoothing, so it is, in

Spectrogram:  ¢(n,m) = Aln+ Z)h*(n — 2 a sense, “close” to a Wigner distributidr.he type Il quasi-
8(n) form =0 Wigner distribution will be useful for illustrating the properties
Binomial: ¢(n,m) = { %[ (n+ é,m —1) + ¢(n — %,m —1)] form >0 of the type Il Cohen class.
¢(n, —m) for m < 0

Quasi-Wigner:

Born-Jordan:

. §(n) for even m
¢n,m) = %6(n + %) + %é(n — %) for odd m
L for |n| < IZL—‘

d(n,m) = { [m b1l

0 otherwise

The Claasen—Mecklenéuker (CM) distribution is equiv-
alent to their discrete implementation of the type | Wigner
distribution [17]. The CM distribution is related to a scaled
and sampled version of the type | Wigner distribution when
the signal is oversampled by a factor of two. However, since

Rihaczck: $(n,m) =8{n— 2}
Page: o(n,m) = b(n - ;ﬂ) the CM distribution requires the signal to be oversampled by
8 gl = 2 . . . . . .
Lovi plrem) = 5(n 4 121) two, it should not be considered a type Il Wigner distribution.
Vin: 7, = 5
Claascn- d{n) for even m . . . . . . . .
Mo eiuker. | P0™) ={ o ) A B. Relationship with the Classical Wigner Distribution

Although the type Il Cohen class is equivalent to the class
of AF-GDTFD’s, the properties of the type Il Cohen class
are not well understood. In particular, TFD’s in the type Il
Cohen class appear to have more terms in the time—frequency
plane than TFD’s in the type | Cohen class. It is unclear what
these components represent, and authors have attributed them

A prominent distribution that is missing from the listas due to aliasing [18], [22]. In this section, we will present a
in Table Il is a type Il Wigner distribution. Discretizationmeans for computing type Il TFD’s from the type | (classical)
methods [15]-[17], [28] have failed to produce a satisfactoMyigner distribution as a means for explaining the properties
type Il Wigner distribution since they require the signal t@f the type Il Cohen class.
be oversampled by a factor of two. In [36] and [37], we The procedure for computing a TFD in the type Il Cohen
present an alternative definition of the type | (classical) Wignelass is represented pictorially in Fig. 2(a). On the left is the
distribution that generalizes straightforwardly to all four signal , o . S . i

In [21], this distribution was called, without justification, a discrete Wigner

types. Unde_r th.iS definition, W? have Shlown that the type (”stribution. We have chosen to call it a quasi-Wigner distribution because it
Wigner distribution does not exist. For this reason, the typei$l“close”, but it is not the real thing.

distributions can be expressed as

RDL(¢, w) = 2* (t)X(w)efj""'t
RDY(n,w) = 2% (n) X (w)e 9.
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Fig. 3. Pictorial representation of the cross terms in the type I, I, and IV Cohen classes. Open circles represent auto terms, and filled ceoles repres

cross terms. The dashed lines show how the cross terms are between the auto terms.

hexagonally sampled LACF, in the middle is the hexagonally TABLE Il
sampled kernel, and on the right is the generalized LACF. AUTO TERMS AND CROSS TERMS IN A TYPE

. . . Il TFD oF A Two COMPONENT SIGNAL
To compute the TFD, we would perform discrete-time Fourier
transforms on the lag variable of the generalized LACF. In component location type
Fig. 2(b), we present an alternative method for computing 1 W/l(in,w) + ®,PLn,w) (r1,w1) auto term
TFD’s in the type Il Cohen class by means of the classical 2 Wl(n,w) + @, Pr(n,w) (n2, ws) auto term
Wigner distribution. To do this, we double the number of 3| 2R{W.,(n,w) % ®,Prn,w)} | (HF"2,93%2) | cross term
points in the LACF with sinc interpolation and double the 4 Wi(n,w) * &P (n,w) (n1, w1 +7) cross term
number points in the kernel by inserting zeros. If we denote 5| Wy (nw) % ®.Pr(n,w) (n2,wz +7) cross term
the modified LACF asiiI(n,m) and the modified kernel by 6 | 2R{Wz,(n,w) # @.Pu(n,w)} | (1572, #52 + ) | cross term

¢(n,m), then it is straightforward to see that we are computing

the exact same distribution
a frequency ofr rad and will be called the highpass part of

" — . ) o the kernel. TFD’s in the type Il Cohen class are computed
Cln,w)y= %" RIn/,m)d(n—n',m)e - by performing a 2-D convolution ofV!(n,w) with P(n,w).
{20/ m}ez nez The lowpass part of each kernel will perform as expected by

However, if we reverse the order of the summations, then \ﬁgptgrln%ﬁleﬂw_eﬂts of thetwllcgtrr:erkdstn:)ut]l(l)n thf‘t arel SIOW'}[/
can express TFD’s in the type Il Cohen class in terms of Z¥INg. The highpass part of the kermel will capture elements

L . . of the Wigner distribution that are quickly varying and displace
time-sampled, type | Wigner distribution them in frequency byr rad. The highpass part of the kernel is

an unexpected, but integral, part of the type Il Cohen class. The
highpass part of the kernel cannot be eliminated and is what

Oy (n,w) = Wi(n,w) s @uP(n,w)|, o,

where makes the properties of the type Il Cohen class different from
_ 7 —jwm the properties of type | Cohen class. In fact, the highpass part

P = J
(n,w) zm: $(n,m)e of the kernel is necessary if the TFD is to satisfy the frequency

shift covariance property [33].

and W (n,w) represents a time-sampled, type | Wigner dis- As a means for illustrating the properties of the type II
tribution. For more details, see [33]. Cohen class, we will now apply the above to a fictional,

Three examples of modified kernels in the time—frequengyo-component signal with the first component centered at
plane P(n,w) are shown in Fig. 4. The first corresponds t@n;,w;) and the second component centeredrat w-). The
the type Il binomial distribution, the second corresponds to thgigner distribution of this signal is represented pictorially
type Il quasi-Wigner distribution, and the third corresponds @ Fig. 3(a), where the open circles represent the two auto
a type Il spectrogram with a Hanning window. Note that singerms, and the filled circle represents the cross term. Since
all three kernels satisfy(n,m) = ¢*(—n,m) analogous to there are two parts to the modified kernel, the type Il TFD
the restriction above for the type | Cohen class, the phase\@fi have six terms rather than three. These six terms are
these filters is O otr. are represented pictorially in Fig. 3(b) and are listed in Table

Each kernel contains two distinct parts. The smooth part gf where 7;,(n,w) and Py (n, w) represent, respectively, the
each kernel is what we would expect and will be called thewpass and highpass parts of the modified kernel. The first
lowpass part of the kernel. The oscillating part is centered @fo terms represent the signal components and will be called

44, denotes a convolution in the variable and@,, denotes a circular 2Ut0 terms. The last four terms are centered between the two
convolution in the variable.. auto terms on the cylinder and will be called cross terms.
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Fig. 4. Three modified kernels for the type Il Cohen class in the time—frequency plane.

Cross term four [cf., Fig. 3(b)] lies between auto term one In general, the cross terms in the type Il Cohen class satisfy
and the periodic repetition of itself. This cross term arrivethe following properties, which are analogous to the cross term
from filtering autoterm one with the highpass part of thproperties of the type | Cohen cldss.
kernel. Thus, like the auto term one, cross term four does. Cross terms are centered exacﬂy between two auto terms,
not oscillate. However, since cross term four is being filtered \here “between” is applied on the surface of the cylinder.
by the highpass part of the kernel, it is attenuadedf it were  « |f two auto terms are separated in time#y, then the rate
oscillating in time at a rate o7 rad and being attenuated by of oscillation of the cross term in the frequency direction
the lowpass part of the kerneThis equivalence is a result of will be no.
the fact that the lowpass and highpass parts of the kernel are |f two auto terms are separated in frequency dy,
related by a simple modulation. By removing the modulation  then the rate of oscillation of the cross term in the time
from the highpass part of the kernel and transferring it to the direction will be min{wy, 27 — wo}.
nonoscillating auto term, we can see that this is equivalent tos The ability of the kernel to attenuate the cross term is
lowpass filtering a highly oscillatory term. Cross term five is  directly related to the distance between the cross term

analogous to cross term four. and the corresponding auto terms (regardless of the rate
Cross terms three and six arise from filtering the cross of oscillation of the cross term).

term in the Wigner distribution, are centered on the cylinder
between the two auto terms, and will have the same frequency
of oscillation. However, since cross term three is being filtere
by the lowpass part of the kernel and cross term six is beingFor the first example, we use sinusoids of three different
filtered by the highpass part of the kernel, the cross terms wilequencies. The binomial distributions of these sinusoids are
not be attenuated by the same amacuBien though the two shown in Fig. 5(a)—(c). For the low-frequency sinusoid, the
terms have the same rate of oscillation in the time directioWigner distribution will have two auto terms and a slowly
the term that is closest to the auto terms will be attenuated t&ying cross term between them. Since the three components
most. This is discussed in much greater detail in [33]. in the Wigner distribution are all slowly varying, the three

Examples

SUnless the two auto terms are separatedrbyad in frequency. In this
case, the two auto terms will be attenuated by exactly the same amount.  8Subject to the kernel constraint mentioned above.
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Fig. 5. Examples illustrating the properties of the type Il Cohen class.

components are all captured by the lowpass part of the kerfal the highpass part of the kernel and is thus captured

and ignored by the highpass part of the kernel. by neither. Again, the highpass part of the kernel has no
For the middle frequency sinusoid, the Wigner distributioaffect.

will have two auto terms and a medium varying cross term. For the high-frequency sinusoid, the Wigner distribution

The auto terms are slowly varying and again captured by thél have two auto terms and a quickly varying cross term.

lowpass part of the kernel. The cross term is varying to&s before, the auto terms are captured by the lowpass part of

quickly for the lowpass part of the kernel and too slowlyhe kernel. However, now, the cross term is varying quickly
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enough to be picked up by the highpass part of the kernel atidsignals a$
thus, appears at a frequency »frad.

For the second example, we will compute the quasi-Wigner Z/Og(”’w) [O;I(n,w)]* dw = Zx(n)y*(n)
distribution and binomial distribution of two parallel chirps. " "
These TFD's are shown in Fig. 5(d) and (e). The quasiD's in the type Il Cohen class will satisfy the Moyal formula
Wigner kernel performs very little smoothing on the Wignetinder
distribution. As a result, all the components of the Wigner
distribution are captured by both parts of the quasi-Wigner Z¢(”vm)¢*(”+avm) =6(a) Vm. ()
kernel, and the resulting distribution has six components. "
Since the binomial kernel provides more smoothing than tidne proof is straightforward and is presented in [33]. Examples
qguasi-Wigner kernel, the highpass part of the binomial kernefl TFD’s that satisfy this constraint are the type Il Rihaczek,
will have very little effect, and the binomial distributionPage, and Levin distributions.
appears to be very similar to TFD’s in the type | Cohen
class. E. Aliasing

Since the type Il spectrogram is a meml_oer of the YPe The above analysis provides an explicit mechanism for
Il Cohen class, the spectrogram kernel will also conta

h derstanding the properties of distributions in the type Il

lowpass and a highpass parts. The type I spectrogram (9l class. The analysis clearly shows that distributions in

a high-frequency sinusoid is computed using a rectangular : g
window of length 19 and shown in Fig. 5(). The type llﬂe type Il Cohen class will have more terms than distributions

{ f this sional Id tain t o0 t in the type | Cohen class. Aliasing occurs when a continuous
spectrogram of this signal would contain two auto e, .jop js sampled at a rate that is lower than the Nyquist

?nd a grea;nl;(/) att;n};?te(rj],_ ﬂwckly V‘Ty'??h crl?ss tlerm tat r&te. Since the operation of computing a type Il Cohen class
t[]gquency c; ra .d € Lg p{ahss part o et etrne fcap UED is defined explicitly for type Il (discrete time) signals, it
IS cross term and creates the component at a 1réqueRLy, i clear how to define “aliasing” in this context. However,

of = ra_d in the type Il spectrogram. Due to Fh(_a e>§tr.emﬁ1e following properties of TFD’s in the type Il Cohen class
smoothing nature of the type Il spectrogram, it is d'ﬁ'CUIEre contrary to the notion of “aliasing,” and thus, we have

:/(i)si]g::ed an example where all six components would b(?hosen to designate the extra terms as cross terms.

» There exist distributions that satisfy the Moyal formula

(and thus can reconstruct the signal to within a constant
D. Additional Properties phase [33], [42]).
The extra terms do not prevent the time and frequency
marginals from being satisfied.
The extra terms always exist, even when the signal is
severely oversampled.
The extra terms behave like cross terms with regard to
their location and attenuation.
The extra terms are necessary for the distribution to be
covariant to circular frequency shifts.
The type Il spectrogram also contains these extra terms,
although they are usually not apparent.

2

When the class of AF-GDTFD’s was originally presented by
Jeong and Williams [21], they also derived kernel constraints
for the distributions to satisfy many desirable properties:
realness, positivity, time shift covariance, frequency shift
covariance, time marginals, frequency marginals, finite time
support, finite frequency support, instantaneous frequency, and
group delay. However, in [21], the kernel constraints for the
group delay, instantaneous frequency, and finite frequency,
support properties are incorrect. We have investigated
this in greater detail and provided corrections in [33],
but this must be omitted here due to space limitations.
Here, we will briefly investigate the kernel constraints
for the finite frequency support property and the Moyal The type Ill Cohen class is useful in applications such as in
formula. the analysis of scattering [43], [44], where complex frequency

For the type | Cohen class, a TFD is said to satisfy tt@ata is being collected and it is desired to compute TFD’s of
finite frequency support property X (w) = 0 for w ¢ [w,,w;]  this data. However, since the type Ill Cohen class is the exact
implies thatCL(¢,w) = 0 for w ¢ [w,,ws]. However, since the dual of the type Il Cohen class, there is no need to investigate
frequency variable of a type Il Cohen class TFD is periodithis class any further.
the finite frequency support property is not well defined. A type
| TFD is said to satisfy the strong frequency support property VI. THE TYPE IV COHEN CLASS

: SR . e
[38] if for any wo, X(wo) = 0 implies thatCy(t,wo) = 0. There has been relatively little work investigating TFD’s
This property can be satisfied, and an example of a typef(l_)lr type IV signals. Richmaret al. [9] have investigated a

TFD that satisfies this is the type Il Rihaczek distribution thqgtlpe IV Wigner distribution using group theory. In addition

has been defined above. . -
N tal.[7], [8] h tigated TFD's for type IV
The validity of the Moyal formula [3], [39] is useful o eyanaretal.[7], [8] have investigate s fortype

in several applications, including signal synthesis [40] and7The Moyal formula can be written in a more general form that involves
' oss TFD’s of two signals. The result given below also holds for the more

. - . . . r
detection/estimation problems [41]. Given two type Il S'gna&eneral case; however, we do not wish to introduce type Il cross TFD’s at
x(n) andy(n), the Moyal formula can be formulated for typethis point.

V. THE TYPE lll COHEN CLASS
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Fig. 6. Equivalent methods for computing the type IV Cohen class. On the left is the LACF, in the middle is the kernel, and on the right is the generalized
LACF. The dashed lines delineate the period of each of the functions.

signals using operator theory. By extending the above praard the kernels are related to each other analogous to (3). The
for the type | Cohen class, we immediately generate a closiegictionsRLY (n,m), ¢(n,m), RY (p, k), and®(p, k) are all
form for the entire class of quadratic, shift-covariant TFD’sampled on hexagonal grids and are periodic in the hexagonal
for type IV signals sense. Examples @Y (n, m) and¢(n, m) are given in Fig. 6
v for a signal of length 4.
Ce (” k) Since the distributions produced by Richretral. are shift-
i covariant and quadratic, they will be members of this class.
Z Z Jx* (n2)yp(n1 —n,ny —n) The method of Narayanagt al. is promising but has yet to
=0 72_0 ] produce a closed form for the entire class. Our method is more
~92rk(na—na)/N complete than the previous two works in that we generate the
(6a) entire class, and the mathematics behind our derivation are
_ Z Z RY (n,m) ¢(n — n',m) o—i2mkm/N more straightforward.
V< ez The type IV Cohen class can also be considered to be a
- generalization of the type IV spectrogram

X e

(6b)
-1 N— N N
NZZXkl k)W (ky — k kg — k) SV (k)= >0 a(
kl_O k2_0 ni= 1n2—1
x ¢l 2k —ka)/N x h(ny —n)h*(ng — n)efjk("lfnz).
6C
1 ) ' ) (6c) From this, it is clear that the type IV spectrogram is a member
N 3 RY(.K)®(p,k — k)™ /N (6d) of the type IV Cohen class and that TFD's in the type IV
0<K+2<N,pez Cohen class can be decomposed into a weighted sum of type

where the type IV temporal LACF and spectral LACF artlev spectrograms.

defined as
A. Distributions in the Type IV Cohen Class
RY(n,m) :a:(n—i—ﬂ)a:*(n— T) ctrib i
@ AT 9 9 To convert distributions from the type | Cohen class to
RY (. k) = X (F xe(p_P 'the type 1l Cohen class, we _S|mply sampled the correspond-
x (P K) ( + ) ( 2) ing kernels. To convert distributions to the type IV Cohen
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TABLE IV number of points in the kernel by inserting zeros between all
Some KERNELS FOR THETYPE IV COHEN CLAss the points. The modified LACF and kernel are sampled on
Spectrogram: d{n,m) = h{n+ ) h*(n — 2). rectangular grids and will also be periodic in the rectangular
Wigner [ b(n) for even m sense. For '_[he second step, we extract a port?(ﬂN}by-Z_N _
(odd N): ¢(n,m) *{ §(n+ ) for odd m points that is exactly one period of the modified functions in
cos?(rm/2N) forn =0 the rectangular sense. This is shown pictorially in Fig. 6(b). If
Quasi-Wigner $(n,m) = siin2(7rm/2N) for n = %1 N ) we denote ~the modified LACF dgiv(ﬂ, m) and the modified
(even N): ' i forn={3,7+3N-3}  kernel as¢(n,m), then the modified method pictured in
0 otherwise .
Fig. 6(b) can be represented as
Rihaczek: $(n,m) =68(n— )
2N—-1 _ .
CY (k)= Y [BY (n,m)@,d(n,m)]
class, we must also account for the periodic nature of the m=0
distributions. The generalization of the spectrogram and the x ¢—J2mkm/N . (7)
n,kC[0---N —1]

Rihaczek distribution to type IV signals is straightforward, and
the corresponding kernels are listed in Table IV. For exampBy applying Fourier transform properties, it can be shown that
the type IV Rihaczek distribution can be expressed as v .

RDY (n, k) = a*(n) X (k)ed2™/N, el
do
We have also generalized the binomial distribution to the type IN_1
IV Cohen class, but we have not included the kernel in Tabl N - ~ N F2mmk/N
IV since it has a complicated form. ep(n’k) o z_:o $(n,m) + ¢<n + TR +N>C

As mentioned above, in [36] and [37], we presented an
alternative definition of the classical Wigner distribution theand Wl(n, k) represents samples of the classical Wigner
extends easily to the three types of discrete signals. Surpdéstribution in time and frequency. For more details, see [33].
ingly, under this definition, the type IV Wigner distribution Three examples of modified kernels in the time—frequency
exists only for signals with an odd length period. The kernglaneP(n, k) are shown in Fig. 7. The first corresponds to the
of this distribution is listed in Table IV and is identical thetype IV binomial distribution, the second corresponds to the
definition proposed by Richmaet al. [9]. For signals with type IV quasi-Wigner distribution, and the third corresponds
an even length period, we have constructed a type IV quaki-a type IV spectrogram with a Hanning window. As above,
Wigner distribution that performs very little smoothing andll kernels satisfyp(n, m) = ¢*(—n, m).
has similar characteristics to the type IV Wigner distribufion. Each of the kernels has four distinct parts. The first behaves

This kernel is also listed in Table I¥. as a lowpass filter both in the time and frequency directions
and is similar to the kernel in the type | Cohen class. The
B. Relationship with the Classical Wigner Distribution second behaves as a lowpass filter in the frequency direction

and a highpass filter in the time direction and is similar to

In order to understand the properties of the type IV Coh . )
class, we will use a method similar to the method used f%ﬁe highpass part of a type Il Cohen class kemel. The third

the type Il Cohen class. In Fig. 6(a), we have an example %?mponent behaves like a lowpass filter in the time direction

how to compute a TFD in the type IV Cohen class for a foua}gr?] aor::ggf EZE;”t:Sr 'If‘k;hg Lr_e ?}uzr;gyf.ig??gobno’tmg;rlﬂglg:g
point signal. The LACF and the kernel will be sampled oﬁ P ves i '9hp ! ! :

. . N requency directions.
hexagonal grids and will also be periodic in the hexagonaFWe will now apply the above to a fictional, single-

sense. However, the convolution of the LACF with the kernel,

which is called the generalized LACF, will be sampled on omponent signal  with ~ period N’ - centered - on - the

rectangular grid and will also be periodic in the rectangula'rme_fn:}quency torus at(ny, k1). Because of the four

sense. For anV-point signal, this generalized LACF will parts of the kernel, there will be three other terms centered at
have N-by-N points. To compute the type IV TFD, we mus[g1 +N/2, k), (n1, by + N/2), and (ng + N/2, ky + N/2).
imilar to the type Il Cohen class, we will choose to designate

perform a discrete Fourier transform in the lag variatle
. . . these terms as cross terms between the component and the
In Fig. 6(b), we present an alternative method for computing ">~ . e ;
v s riodic repetitions of itself.
TFD’s in the type IV Cohen class by means of a sampl . N . .
For a two-component signal, the situation is a little

version of the classical Wigner distribution. For the ﬁrsrtnore complicated. Add a second component centered at
step, we will double the number of points in the LACF by, b . P
na, k2). There will be three cross terms between the

performing & 2-D sinc interpolation. We will also double th Second component and the periodic repetitions of itself.

8The type IV Wigner distribution proposed by Richmenal. for signals There will also be four more cross terms occurring between

with an even length uses a different group structure than their odd len .
e o ; . . two components on the torus. These will be centered
distribution and has strikingly different properties. For these reasons, it d A, k1+k2) (nl—l—nz—I—N k1+k2) (nl+n2 k1+k2+l\,)
’ ’ 2 ’ ’

not seem appropriate to designate their even length distribution as a “Wig@dr ( > > s > ’y o >

distribution.” mtnot N kit +N) There will be a total of 10 cross terms
9This definition arose from working backward from the modified kernels,

which will be described below. 10Note carefully the sampling for andm in Fig. 6.
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Fig. 7. Three modified kernels for the type IV Cohen class in the time-frequency plane.

for a two-component signal. The configuration of the auto and the corresponding auto terms (regardless of the rate
terms and cross terms for a two component signal is depicted of oscillation of the cross term).
in Fig. 3(c). Note that all of these cross terms are necessary
for a type IV TFD to satisfy the time and frequency shiff- Kernel Constraints and Distribution Properties
covariance properties [33]. We will not develop the rate Here, we will present sufficient kernel constraints for TFD’s
of oscillation of the cross terms in the time and frequendy the type IV Cohen class to satisfy several desirable prop-
directions and the attenuation properties since they areemies. In all cases, the proofs are simple extensions of those
direct extension of the type Il Cohen class outlined above. for the type | and type Il Cohen classes and will be omitted.
In general, the cross terms in the type IV Cohen class satidfiie properties and the corresponding kernel constraints are
the following properties, which are analogous to the propertitisted in Table V. The properties of finite time support and
of the type | Cohen class. finite frequency support are not well defined since type IV
 Cross terms are centered exactly between two auto terfhED’s are periodic in both time and frequency; however, the
where between is applied on the surface of the torus. strong time support and strong frequency support properties
« If two auto terms are separated in time#y, then the rate can be satisfied. An example of a TFD that satisfies the
of oscillation of the cross term in the frequency directioMoyal formula, the strong time support property, and the
will be min{ng, N — ng}. strong frequency support property is the type IV Rihaczek
- If two auto terms are separated in frequency hy distribution.
then the rate of oscillation of the cross term in the time For the instantaneous frequency property, we assumed a
direction will be min{ky, N — ko}. signal of the formz(n) = ¢/, and for the group delay
« The ability of the kernel to attenuate the cross term yoperty, we assumed a signal of the foiki(k) = ¢/,
directly related to the distance between the cross tef@ther alternatives for the instantaneous frequency and group
delay properties could have been considered, as was done for
1subject to the kernel constraint mentioned above. the type Il Cohen class in [33].
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Fig. 8. Examples of TFD’s in the type IV Cohen class. On the left is a single Gabor logon, in the middle is a signal with a sinusoidal instantaneous
frequency, and on the right is an aperiodic sinusoid.

D. Examples The quasi-Wigner distribution clearly shows the cross terms

We now prevent several examples to illustrate the propertias Predicted above. The cross term in the upper-right corner

of the type IV Cohen class. We will use three of the type |\#as a negative amplitude and cancels out the other cross terms

distributions mentioned above. The first is a type IV spectrd! the marginal calculations. The spectrogram and binomial

gram with a Hanning window. Like the type | spectrogramTFD attenuate the cross terms and provide some smoothing

this distribution eliminates cross terms very well but als8f the auto term. _ _ _ _
suffers from poor resolution. The second is the quasi-Wigner | "€ Second signal has a sinusoidal IF and is defined as
distribution, which provides very little smoothing and is useful
for displaying the properties of the cross terms in the type IV
Cohen class. The third is the type IV binomial distributionNotice that none of the TFD’s show edge effects that would
which provides for a tradeoff between the first two in terms ¢¥¢ apparent in a type Il TFD. The three TFD’s illustrate the
maintaining resolution and suppressing cross terms. In Fig.t¢deoff between resolution and cross term suppression.
we present type IV TED’s corresponding to these kernels for The third signal is an aperiodic sinusoid
three different test signals. z(n) =sin(an/3) n=1---128

The first signal is a Gabor logon and is defined as

— 6j(71'n—32 cos(2wn/128))

x(n) n=1---128.

By aperiodic, we mean that since 3 is not a divisor of 128, the
signal is not continuous at the period boundary. The magnitude

a(n) = ¢~ (327 /20wy of the DFT of this signal contains “leakage,” and this also

128.
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TABLE V
KERNEL CONSTRAINTS FOR THETYPE IV COHEN CLASS

Boashash [13] has created a class of discrete TFD’s for
type |l signals called the generalized discrete time—frequency
distributions (GDTFD’s). While the implementation of this
method is slightly simpler conceptually since all functions are
defined on rectangular grids, there are many disadvantages to
this method. The GDTFD'’s have the following disadvantages.

¢ They do not compute samples of the type | Cohen class.

Real: p(ny,ng) = P (ng,n) =  S{CVnk)}=0

Positive: Py, ma) = h(n) ¥ (my) ==  CL¥(n,k) >0

. N
Veginal vinn) = d)/N = ;Civ("v“ = la(m)f* « They are covariant to neither linear nor circular frequency
B shifts.
Frequency ¥ Voo \ ¢ They do not include any type of spectrogram.
Marginal: ;”"”*”“):1 ve = 2 Gk =X  They require an oversampled signal and are thus more
expensive computationally.
iﬁ} Plni,ma) =0 for |ny|# o] = The GDTFD’s and their relationships with the type | and type
Support: Ci¥ink)=0 ¥n suchthat z(n)=0 Il Cohen classes are examined in much greater detail in [33].
Given the above, the Cohen classes seem preferable to the
e Bl k) =0 for [kl # ka| = GDTFD’s.
Support: ClV(n,k) =0 Vk suchthat X(k)=0
.
Y dlnten)yntctanta) =éa) Yo — VIIl. CONCLUSION
The MO)-ral n=1 : . ) ,
Formula: i B ) = |3 ale) ) The.most well known and most often useq TFD’s are
st = those in the Cohen class. The Cohen class is often called
the shift-covariant class because it can be shown to include
Bl —1)=d(n) +8n -1 = every quadratic TFD that is covariant to time shifts and
i‘:ﬁ‘e‘::y”"“ argieﬂ”"/‘v Vi k) - [21 <p(n+1);<p(n~1)} man  frequency shifts. In this paper, we have used the axioms of
=1 g shift covariance to extend the original Cohen class to the three
types of discrete signals in Table I. The extension is relatively
Group ) Dk k—1) =dk) +k—1) = simple and immediately generates a closed form for the entire
Dolay: arg 3 Y Gl () = [%w(k+l)gw(k— 1)] wody  class.

Having a closed form for the classes does not immediately
provide an understanding of the properties of the classes. To
this end, we have provided an explicit relationship between the
occurs in the type IV TFD’s. All three of the TFD’s showclassical Wigner distribution (whose properties are very well
a discontinuity at the period edge. The quasi-Wigner shoJf80Wn) and the discrete Cohen classes. With this relationship,
some energy at a frequencies ®f/3 and 47 /3 rad that is It iS straightforward to see that the properties of the discrete

a result of the discontinuity but does not have an obvio$sohen classes, while different from the original Cohen class,
interpretation. are a direct consequence of the periodicities of the discrete

signals.
All TFD’s mentioned in this paper can be computed from
VL. a MATLAB software package that is freely available at
Given that the type | Cohen class has fewer cross terms tH#tp://mdsp.bu.edu/jeffo.
the discrete Cohen classes, we might wonder why the discrete
Cohen classes are necessary. Here, we give three advantages
of the discrete Cohen classes over the original Cohen class

n=1
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