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Polynomial Chirplet Transform With Application to
Instantaneous Frequency Estimation

Z. K. Peng, G. Meng, F. L. Chu, Z. Q. Lang, W. M. Zhang, and Y. Yang

Abstract—In this paper, a new time–frequency analysis method
known as the polynomial chirplet transform (PCT) is developed
by extending the conventional chirplet transform (CT). By using a
polynomial function instead of the linear chirp kernel in the CT,
the PCT can produce a time–frequency distribution with excellent
concentration for a wide range of signals with a continuous in-
stantaneous frequency (IF). In addition, an effective IF estimation
algorithm is proposed based on the PCT, and the effectiveness of
this algorithm is validated by applying it to estimate the IF of a sig-
nal with a nonlinear chirp component and seriously contaminated
by a Gaussian noise and a vibration signal collected from a rotor
test rig.

Index Terms—Chirplet transform (CT), instantaneous fre-
quency (IF), polynomial chirplet transform (PCT), short-time
Fourier transform (STFT), time–frequency analysis.

I. INTRODUCTION

THE CONTROVERSIAL concept of instantaneous fre-
quency (IF) was first put forward by Carson and Fry [1] in

1937 for the analysis of monocomponent frequency-modulated
(FM) signals and then was further developed by Van der Pol [2]
and Gabor [3]. Now, the widely acknowledged definition of the
IF was proposed by Ville [4], unifying the work by Carson and
Fry [1] and Gabor [3]. According to the definition of Ville, the
IF of a signal can be calculated from the derivative of the phase
of its analytic signal.

The IF concept has played important roles for the study
of a wide range of signals, from radar [5], sonar [6], bio-
medical engineering [7], seismic investigation [8], and speech
and music[9] to automotive signals [10], where the IFs are
often used to characterize important physical parameters of the
signals. Various IF estimation methods have been developed;
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Boashash [11], [12] contributed a comprehensive overview for
these where the interpretation of the IF concept itself, as well
as the literature about IF estimation methods published before
1992, was presented. Generally, the IF estimation methods can
be classified into five categories: 1) phase difference-based IF
estimators; 2) zero-crossing IF estimators; 3) linear-prediction-
filter-based adaptive IF estimators; 4) IF estimators based on
the moments of time–frequency distributions (TFDs); and 5) IF
estimators based on the peak of TFDs. Among the five classes
of the IF estimators, the use of TFDs can produce results that
are more reliable and more robust to noise. Therefore, the
TFD-based methods have attracted much more attention and
developed more quickly than the others.

The capability of the TFD-based methods lies on the property
of TFDs of concentrating the energy of a signal at and around
the IF, in the time–frequency plane. Three approaches, namely,
the short-time Fourier transform (STFT) [13], the continuous
wavelet transform (CWT) [14], [15], and the Wigner–Ville
distribution (WVD) [16], are commonly used to produce the
TFDs for signals. The STFT and the CWT are essentially a
kind of linear transforms characterized by a static resolution in
the time–frequency plane, which is subdivided into elementary
cells of a constant area. However, due to the restriction of
the Heisenberg–Gabor inequality, neither the STFT nor the
CWT is able to achieve a fine resolution in both the time and
frequency domains, a good time resolution definitely implying
a poor frequency resolution. Consequently, the time–frequency
representation obtained by the two methods is meaningful only
under a certain time/frequency resolution. Therefore, the STFT
and CWT can never produce the true time–frequency pattern
for a signal and so can only present an estimation of limited
measurement accuracy to the IF for a signal, particularly when
the IF trajectory is a nonlinear function of time. To improve the
estimation accuracy, reassignment techniques [17] have been
proposed. The WVD is a kind of quadratic transform that can
achieve a highly accurate estimation for noise-free signals.
When a signal has a linear frequency law and constant ampli-
tude, its WVD will reduce to a row of delta functions along
the linear IF trajectory. However, in the cases of noisy signals
or nonlinear IF law, the WVD peak-based estimators would be
biased, and it has been shown that the bias-to-variance tradeoff
is inevitable for the estimated IF result. The bias caused by the
IF nonlinearity is proportional to a power of the lag window
length, while the variance caused by the noise is a decreasing
function of the lag window length. Efforts have been made to
improve the capability of the WVD to achieve a better estima-
tion for the nonlinear IF, mainly through adjusting the window
length. Stankovic and Katkovnik [18] suggested a method using
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the WVD with an adaptive window length, and the same authors
also proposed a way by using the WVD with varying and data-
driven window length [19]. The TFD peak-based algorithm has
also be applied in other WVD representations, including the
polynomial WVD [20], [21], which was shown to be unbiased
for the nonlinear IF trajectory, and the pseudo- and smoothed-
pseudo-WVDs [22], which were intended to suppress the cross-
terms caused by noise in the time–frequency plane.

Aside from the TFD analysis methods mentioned earlier, the
chirplet transform (CT) [23] is another kind of TF method
which is particularly designed for the analysis of chirplike
signals with linear IF law. When the IF trajectory of the signal
under consideration is a nonlinear function of time, the CT
can no longer assure an enhancement of the analysis accu-
racy, and therefore Chassande-Mottin and Pai [24] suggested
the chirplet chain to deal with the gravitational wave signals
which essentially are a quasi-periodic FM signal, and Angrisani
and D’Arco [25] proposed a modified version of the CT by
introducing an extra curvature parameter to the conventional
CT which was shown to be particularly effective for the signals
with IF characterized by higher dynamics. In this paper, a new
CT known as polynomial CT (PCT) is proposed. Based on
the PCT, a procedure is then developed to estimate the IF of
the signals with a highly nonlinear IF trajectory. The PCT is
developed by replacing the chirplet kernel with a linear IF law
in the CT with a new kernel with a polynomial nonlinear IF
law. In mathematics, the Weierstrass approximation theorem
[26] guarantees that any continuous function on a bounded
interval can be uniformly approximated by a polynomial to any
degree of accuracy. Therefore, the PCT is capable of presenting
a highly accurate analysis for a wide range of signals with IF
trajectories being any continuous functions of time.

This paper is organized as follows. After a brief descrip-
tion of the theory underlying the conventional CT, the details
concerning the PCT are given in Section II. The PCT-based IF
estimation procedure is then set up in Section III. In Section IV,
the effectiveness of the new proposed IF estimator is validated
by applying it to several signals. The conclusions are given in
Section V.

II. THEORETICAL BACKGROUND

A. Conventional CT

The CT [23], [27] of a signal s(t) ∈ L2(R) is defined as

CTs(t0, ω, α;σ) =

+∞∫
−∞

z(t)Ψ∗
(t0,α,σ)(t) exp(−jωt) dt (1)

where z(t) is the analytical signal of s(t), generated by
the Hilbert transform H , i.e., z(t) = s(t) + jH[s(t)], and
Ψ∗

(t0,α,σ)(t) is a complex window given by

Ψ(t0,α,σ)(t) = w(σ)(t − t0) exp
(
−j

α

2
(t − t0)2

)
. (2)

Here, the parameters t0, α ∈ R stand for the time and chirp
rate, respectively; w ∈ L2(R) denotes a nonnegative, symmet-

Fig. 1. Illustration of the conventional CT (�—the IF law of the object chirp
signal; −—after frequency rotation; −.—after frequency shift).

ric, and normalized real window, usually taken as the Gaussian
function expressed as

w(σ)(t) =
1√
2πσ

exp

(
−1

2

(
t

σ

)2
)

. (3)

From the definition of the CT given as (1), the CT may be
interpreted as the STFT of the analytical signal multiplied by
the complex window Ψ∗

(t0,α,σ)(t). The definition of the CT can
also be written as

CTs(t0, ω, α;σ) = A(t0)

+∞∫
−∞

z̄(t)w(σ)(t − t0) exp(−jωt) dt

(4)

with 


z̄(t) = z(t)ΦR
α (t)ΦM

α (t, t0)

ΦR
α (t) = exp(−jαt2/2)

ΦM
α (t, t0) = exp(jαt0t)

A(t0) = exp
(
−jt20α/2

)
.

(5)

Clearly, ΦR
α (t) is a frequency rotating operator which rotates

the analytical signal z(t) by an angle θ with tg(θ) = −α,
in the time–frequency plane; ΦM

α (t, t0) is the frequency shift
operator that relocates a frequency component at ω to ω + αt0;
and A(t0) is a complex number with modulus |A(t0)| = 1.
In the time–frequency analysis, it is the modulus of the TFD
|CTs(t0, ω, α;σ)| that is usually of interest and meaningful,
and therefore, the definition of the CT can be simplified as

CTs(t0, ω, α;σ) =

+∞∫
−∞

z̄(t)w(σ)(t − t0) exp(−jωt) dt. (6)

From this definition, it can be seen that the CT can be de-
composed into a series of operators: 1) rotating the signal under
consideration by a degree arctan(−α) in the time–frequency
plane; 2) shifting the signal by a frequency increment of αt0;
and 3) doing STFT with window w(σ). This procedure can be
illustrated by Fig. 1, where the object chirp signal is with IF law
of ω0 + λ0t.
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Fig. 2. TFDs generated by the CTs (window size = 512). (a) λ0 = 0.
(b) λ0 = 5π.

The frequency resolution of the CT can be easily determined
from Fig. 1. If the chirp rate parameter α = 0, the CT is equal
to the normal STFT, and the frequency bandwidth of the signal
portion selected by the Gaussian window with time bandwidth
σ is σλ0; then, in the time–frequency plane, this signal portion
would be presented as a cell of frequency bandwidth σλ0 +
1/σ (1/σ is the frequency bandwidth of the Gaussian window)
and time bandwidth σ. In the case of α �= 0, the frequency
bandwidth of the selected signal portion will reduce to σ|λ0 −
α| + 1/σ, and the time bandwidth will be kept unchanged. It
can be seen that, when α = λ0, the frequency bandwidth will
have a minimum value 1/σ; this implies that the TFD gen-
erated by the CT possesses the best concentration. Therefore,
|CTs(t0, ω, α;σ)| has global maximum at (ω, α) = (ω0, λ0).

Consider an example where the CT is applied to a signal
consisting of two components, among which one is with IF
law 10 + 2.5t (Hz) and the IF law of the other one is 12 +
2.5t (Hz), i.e.,

s(t) = sin (2π(10 + 2.5t)t) + sin (2π(12 + 2.5t)t)
(0 ≤ t ≤ 15 s). (7)

The signal is sampled at a sampling frequency of 200 Hz.
Two different chirp rates are used, i.e., λ0 = 0 and λ0 = 5π.
The results are shown in Fig. 2(a) and (b), respectively. It can
be seen that, when λ0 = 0, the CT is degenerated to the normal
STFT, and the two components cannot be separated in the TFD
shown in Fig. 2(a) because of the large frequency bandwidth;
on the contrary, as indicated by Fig. 2(b), the two components
show themselves off clearly in the time–frequency plane as
in this case, and the concentration of the TFD is significantly
improved because the chirp rate parameter used in the CT is
properly selected to match the chirp rate of the signal under
consideration.

B. PCT

As indicated by the example in Section II-A and some appli-
cations presented by other researchers, when the chirp rate is
properly selected, the conventional CT would render the TFDs
of an excellent concentration for the signals whose IF trajectory
is a linear function of time. However, when the IF trajectory
of a signal is not exactly a linear function of time, then it
is impossible for the conventional CT to track the evolution

Fig. 3. Illustration of the PCT.

versus time of the IF of the signal as closely as in Fig. 2(b).
This is particularly true in the presence of IF characterized by
highly nonlinear dynamics where a linear approximation is not
adequate to locally represent the IF trajectory. To improve the
efficacy of the conventional CT in analyzing the signals with a
nonlinear IF trajectory, a modified version known as the PCT is
proposed in this paper. The PCT is defined as follows:

PCTs(t0, ω, α1, . . . , αn;σ) =

+∞∫
−∞

z(t)ΦR
α1,...,αn

(t)

× ΦM
α1,...,αn

(t, t0)w(σ)(t − t0) exp(−jωt) dt (8)

with

ΦR
α1,...,αn

(t) = exp

(
−j

n+1∑
k=2

1
k

αk−1t
k

)
(9)

ΦM
α1,...,αn

(t, t0) = exp

(
j

n+1∑
k=2

αk−1t
(k−1)
0 t

)
(10)

which are the nonlinear frequency rotating operator and the
frequency shift operator, respectively, and (α1, . . . , αn) are
the polynomial kernel characteristic parameters. The operating
principle of the PCT can be illustrated as shown in Fig. 3, where
IFs(t) is the IF trajectory of the signal under consideration.
Specifically, the signal is first rotated in the time–frequency
plane by subtracting from the IF of the signal, IFs(t), the
IF of the nonlinear chirp kernel, i.e.,

∑n+1
k=2 αk−1t

(k−1), is

then shifted by a frequency increment,
∑n

k=2 αk−1t
(k−1)
0 , and,

finally, is subject to the STFT with window w(σ). Obvi-
ously, the frequency resolution of the PCT at the specific
moment t0 is determined by both the value range of IFs(t) −∑n+1

k=2 αk−1t
(k−1) at the time span [t0 − σ/2, t0 + σ/2], de-

noted as ∆IFs(t0;σ), and the frequency bandwidth of the
Gaussian window 1/σ, i.e., the frequency resolution at t0 is
equal to ∆IFs(t0;σ) + 1/σ. Ideally, if the IF trajectory of the
nonlinear chirp kernel exactly matches the curve of the signal,
then IFs(t) −

∑n+1
k=2 αk−1t

(k−1) will be a constant ω0, so the
value range ∆IFs(t0;σ) is zero over the whole time span, and
therefore, the frequency resolutions of the PCT at all specific
moments are equal to 1/σ.
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Fig. 4. Polynomial approximation of a steplike function.

Because the Weierstrass approximation theorem [25] guar-
antees that any continuous function on a closed and bounded
interval can be uniformly approximated on that interval by a
polynomial to any degree of accuracy, for example, by using
the least square method, the steplike function shown in Fig. 4
can be well approximated by a polynomial function of order 15
such that

f(t) ≈ α0 +
15∑

k=1

αktk (11)

with

(α0, α1, . . . , α15)

= (20.587702713821269,−9.051647867114209,

33.245679054901196,−50.867553236045595,

39.838257945911643,−17.459085588666149,

4.374780231656408,−0.593065684358347,

0.033494986306404, 0.000038685263729,

0.000195319871483,−0.000054193791259,

0.000002817176603, 0.000000194295633,

− 0.000000023866664, 0.000000000655585).

Therefore, given a properly selected set of parameters
(α1, . . . , αn), the PCT is capable of producing a highly accu-
rate analysis for a wide range of signals whose IF trajectories
can be any continuous function of time.

C. Numerical Experiment Tests

The performance of the proposed PCT is assessed by tests on
two numerically generated signals. The first signal is given as

s(t) = sin
(

2π

(
10t +

5
4
t2 +

1
9
t3 − 1

160
t4

))

(0 ≤ t ≤ 15). (12)

The signal is sampled at a sampling frequency of 200 Hz. The
IF trajectory of this signal is a nonlinear function of time, i.e.,
f(t) = 10 + 2.5t + t2/3 − t3/40 (Hz). The TFDs of the signal
shown in Figs. 5(a)–(c) and 6 are generated by the conventional
STFT, the CT, and the proposed PCT, respectively. In the CT,

Fig. 5. TFDs of the signal given by (12) (window size = 512). (a) By STFT.
(b) By CT. (c) By PCT.

Fig. 6. TFDs of the signal with steplike IF trajectory (window size = 512).
(a) By STFT. (b) By PCT.

the chirp rate is taken as 6π, and in the PCT, the polynomial
kernel characteristic parameters are taken as (α1, . . . , α3) =
(5π, 2π/3,−π/20); hereby, the polynomial kernel can exactly
track the curve of the IF trajectory of the signal. Basically,
all the three TFDs could render the inherent time–frequency
pattern of the signal. However, it is obvious that the TFD
generated by the PCT has the best concentration while the TFD
by the STFT has the worst concentration. In addition, it can
be seen that, for the CT, the TFD’s concentration at 0–10 s is
better than that at 10–15 s; this is mainly due to that the IF
trajectory of the signal over the time span of [0, 10] s can be
well approximated by a linear chirp signal whose frequency
increases with time at a speed of 3 Hz/s.

The second signal considered here has an IF trajectory
described by the steplike function shown in Fig. 4. Both the
STFT and the PCT are used to calculate the TFD of this signal.
When the PCT is used, the polynomial kernel characteristic
parameters are as given in (11). It is not a surprise to see that,
in this case, the PCT with a set of proper parameters produces
a TFD for the signal of a much better quality in terms of
concentration than the TFD analysis result by the STFT.
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III. PCT-BASED IF ESTIMATION METHOD

As indicated by the two numerical tests in the previous
section, given a set of properly determined polynomial kernel
characteristic parameters, the PCT could produce a high-quality
TFD for a considered signal. The result can have an excellent
concentration, and the IF trajectory can be easily identified
from the analysis. Therefore, the determination of proper pa-
rameters is critical for the application of the PCT method. In
this section, an IF estimation method is developed by using
the PCT.

Briefly speaking, the basic idea of the PCT-based IF esti-
mation method is to use the PCT with all polynomial kernel
characteristic parameters (α1, . . . , αn) = 0 to roughly estimate
an IF, then to approximate the roughly estimated IF using a
polynomial function by the least square method, and then to
conduct the PCT using the polynomial kernel characteristic
parameters for the analyzed signal. Finally, the IF of the signal
can be extracted from the TFD produced by the PCT. As indi-
cated in the previous section, the more the polynomial kernels
used in the PCT match the IF trajectory of the signal under
consideration, the better the concentration of the TFD would
be. Therefore, it is likely that the polynomial kernel estimated
from the roughly estimated IF does not match the IF very well,
but surely, the IF extracted from the PCT would match the true
IF better than the roughly estimated IF. Therefore, we can refine
the IF estimation by adjusting the polynomial kernel using the
IF obtained by the PCT and conducting the PCT again using
the new polynomial kernel. The procedure can be repeated until
no evident modification is observed in the concentration of the
TFD by the PCT or in the estimated IF.

When the concentration of the TFD is used as the criterion,
the Renyi entropy can be used to measure the concentration,
which is defined as

REN(s) = −
∫∫

log |PCTs(t, ω)|3 dt dω (13)

and the termination condition can be set as

ξ(s) =
∣∣REN(i+1)(s) − REN(i)(s)

∣∣ < δ (14)

or

ξ(s) =

∣∣REN(i+1)(s) − REN(i)(s)
∣∣∣∣REN(i+1)(s)

∣∣ < δ (15)

where δ is a predetermined threshold.
When the estimated IF is used as the criterion, the termina-

tion condition is suggested as

ξ(s) = mean

(∫ ∣∣IF(i+1)(t) − IF(i)(t)
∣∣∣∣IF(i)(t)

∣∣ dt

)
< δ. (16)

A. If Estimation Algorithm

The algorithm for the IF estimation can be summarized as
follows.

Initial Step:
Set δ as a specific value; Set the polynomial order n; Set

(α1, . . . , αn) = 0; Set the window size;
The kth Step:

1) Calculate the PCT with (α1, . . . , αn), and denote the
result as TFD(k);

2) Locate the peak in the TFD(k);
3) Approximate the TFD peak data with a polynomial func-

tion of order n using the least square method, and denote
the coefficients as (ᾱ0, ᾱ1, . . . , ᾱn);

4) Calculate the termination criterion ξ(s);
5) If ξ(s) > δ, then k = k + 1; (α1, . . . , αn) =

(ᾱ1, . . . , ᾱn) and go to 1), else go to 6);
6) Take the IF trajectory as the obtained n-order polynomial

function of time;
7) Quit

As stated in the summarization, the polynomial function
order needs to be predetermined at the initial step. However,
it is clear that there is no information about the IF available
for the signal until the first PCT is carried out. Therefore, the
polynomial function order can only be initialized by trial. Usu-
ally, a relatively large order can be adopted for the polynomial
function at the beginning; if the extracted TFD peak data can be
well approximated with a polynomial function of relatively low
order, then the estimated high-order polynomial coefficients
would be close to zero.

IV. VALIDATIONS

To demonstrate the effectiveness of the algorithm developed
in the preceding section, the algorithm is applied to estimate the
IF of the signal described by (12) and the instantaneous rotating
speed of a rotor test rig from its vibration signal.

A. Numerical Signal Described by (12)

In this case, this signal is seriously contaminated by a white
noise whose mean value and standard deviation are 0 and

√
3,

respectively. When applying the PCT-based algorithm, the size
of the Gaussian window is predetermined as 512, the order of
the polynomial function to approximate the IF is set as four,
the termination condition expressed by (16) is used, and the
threshold δ is set as 0.1%.

Before the criterion has reached the threshold, four iterations
of PCT have been conducted; the generated TFDs and the
extracted TFD peak curves, as well as the IF estimated from the
TFD peak data and the true IF, are all presented here and shown
in Figs. 7–10. In Fig. 7, the PCT with (α1, . . . , αn) = 0 is ac-
tually the same as the conventional STFT, and the energy of the
nonlinear chirp component would be scattered over a relatively
wide frequency band; thus, this component cannot show itself
off very clearly in the TFD, and therefore, the extracted peaks
do not match the true IF trajectory very well. Consequently, the
estimated IF approximation deviates from the true IF signifi-
cantly. When the polynomial coefficients of the approximation
are used as the polynomial kernel characteristic parameters, the
TFD concentration of the PCT is improved, as shown in Fig. 8.
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Fig. 7. TFD and the TFD peak data after the first time PCT (STFT).

Fig. 8. TFD and the TFD peak data after the second time PCT.

Fig. 9. TFD and the TFD peak data after the third time PCT.

Using the peak extracted from the improved TFD, the estimated
IF can basically track the true IF trajectory well, except over the
time span from 10 to 15 s. Again, by adopting the coefficients
of the improved IF polynomial approximation, as indicated by
Fig. 9, the TFD concentration for the nonlinear chirp compo-
nent is significantly improved, and this component shows itself
off clearly and so can be easily identified. Not surprisingly,
the estimated IF could be much closer to the true IF of the
nonlinear chirp signal. Now, when the polynomial chirp kernel
with an IF curve that is almost the same as the IF trajectory of
the signal under consideration is used in the PCT, it can be ex-
pected that the concentration of the TFD would be considerably
improved for the nonlinear chirp component as the frequency
bandwidth will be nearly equal to 1/σ, the bandwidth of
the Gaussian window. The related results are shown in Fig. 10.

The values of the calculated criterion for the termination
condition are given in Table I. The results show that the criterion
converges very fast. The coefficients of the polynomial function
approximation are given in Table II. It can be seen that, at k = 1
(for the STFT), there are evident deviations between the esti-
mated coefficients and the true values, but the deviation reduces
with the increase of k, and at k = 4, the estimated coefficients
are much closer to the true values. The relative estimating errors

Fig. 10. TFD and the TFD peak data after the fourth time PCT.

TABLE I
VALUES OF CRITERION

TABLE II
ESTIMATED COEFFICIENTS OF THE POLYNOMIAL APPROXIMATION

TABLE III
ESTIMATION ERROR OF THE IF

of the IF are presented in Table III. The error of 0.0206%
between the final estimated IF and the true IF validates that
the proposed PCT-based algorithm is able to exactly construct
the IF for the signals under consideration, even under a strong
noise environment. The relative error is defined as follows:

Error = mean

(∫ ∣∣∣∣IF(i)(t) − IF (t)
IF (t)

∣∣∣∣ dt

)
. (17)

B. Vibration Signal Collected From a Test Rig

The analysis of the vibration signals collected during the
speedup process or during the speed-down process has played
an important role in the condition monitoring for rotary
machines as those signals usually contain rich information
about the machines’ health condition. Here, the proposed PCT
method is applied to estimate the instantaneous rotating speed
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Fig. 11. Rotor test rig.

Fig. 12. Set of vibration signals.

Fig. 13. TFD and the TFD peak data by the first time PCT (STFT).

of a test rig undergoing a speed-down process through the
vibration signal collected with accelerometers. The test rig is
shown in Fig. 11.

Fig. 12 gives a set of vibration signals to be analyzed, which
was collected with the sampling frequency of 100 Hz. When
applying the PCT-based algorithm, the size of the Gaussian
window is predetermined as 512, the order of the polynomial
kernel is set as nine, the termination condition (16) is used, and
the threshold δ is set as 0.1%. Before the criterion has reached
the predetermined threshold, three iterations of PCT have been
implemented. Figs. 13 and 14 show the generated TFDs and the
extracted TFD peak curves, as well as the estimated speed from
the TFD peak data, for the first and third iterations, respectively.
Obviously, the concentration of the time–frequency representa-
tion for the fundamental component in Fig. 14 is much better
than that in Fig. 13 which is essentially produced by the STFT.
With the estimated coefficients of the polynomial function,
the instantaneous speed of the rotor undergoing a speed-down
process is approximated as

IS(t) ≈ 30.6692 − 0.1367t + 2.0530t2 − 1.6297t3

+ 0.5266t4 − 0.0905t5 + 0.0090t6 − 0.0005t7 (Hz).

It is worth noting here that the proposed PCT would be
less capable in analyzing the multicomponent signals that

Fig. 14. TFD and the TFD peak data by the third time PCT.

contain more than one frequency components, trajectories of
which have to be approximated as different polynomial func-
tions, or at best, the PCT can track only one trajectory of
the components. For example, in the analysis of the afore-
mentioned vibration signal, except the fundamental compo-
nent, the energy concentrations of the other components in
the time frequency representation (TFR) generated by the
PCT are even worse than that in the TFR generated by the
STFT. This is a common problem for parameterized time–
frequency analysis methods, including the conventional CT.
Extending the PCT from the monocomponent signal to the
multicomponent signal case so as to allow the PCT to be
applied to a wide class of signals is the author’s current research
objective.

V. CONCLUSION

By extending the conventional CT, a new time–frequency
analysis method, known as the PCT, is developed in this paper.
The PCT can produce a TFD with an excellent concentration
not only for the linear chirp signals, the IF of which is a linear
function of time, but also for the nonlinear chirp signals, whose
IF is a nonlinear function of time. In addition, based on the new
developed PCT, an effective algorithm is proposed to estimate
the IFs of signals, and the effectiveness of this algorithm is val-
idated by applying this algorithm to estimate the IF of a signal
with a nonlinear chirp component and seriously contaminated
by a Gaussian noise and a vibration signal collected from a rotor
test rig.
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